
FG4 Multibox Manual

Document version: 1.2
Firmware version: 1.0

Contents
1 Introduction 3

1.1 Main Features . 3
1.2 Hardware overview . 3

1.2.1 Main components . 3
1.3 Software overview . 4

2 Hardware interface 5
2.1 Power button . 5

2.1.1 Power button LED . 5
2.2 SD card . 6
2.3 USB . 6
2.4 HDMI . 6
2.5 CAN termination . 7
2.6 CAN . 7
2.7 External triggers . 7

2.7.1 Electrical characteristics . 7
2.8 Service interface . 7
2.9 Programming interface . 7
2.10 Ethernet . 8
2.11 Power supply . 8

3 Application interface 9
3.1 Services . 9

3.1.1 Application service . 9
3.1.2 Logger service . 12
3.1.3 Filesystem service . 13

3.2 Power . 14
3.2.1 Examples . 14

3.3 Firmware . 14
3.3.1 FG4 Multibox firmware update . 14
3.3.2 FG4 card firmware update . 15

3.4 Configuration . 15
3.4.1 Configuration update . 15
3.4.2 Configuration reset . 16
3.4.3 Devices . 16
3.4.4 Examples . 16

3.5 Logger . 16
3.5.1 Examples . 17

3.6 Time . 17
3.6.1 System time . 18
3.6.2 Monotonic time . 18
3.6.3 Examples . 18

3.7 Network . 19
3.7.1 Examples . 20

3.8 Storage . 21
3.8.1 Disks . 21
3.8.2 Mounts . 22
3.8.3 Examples . 24

3.9 Video . 24
3.9.1 Video captures . 25
3.9.2 Video outputs . 44

3.10 CAN . 55
3.10.1 CAN devices . 55
3.10.2 CAN captures . 58

3.11 Timers . 61
3.11.1 Examples . 63

3.12 FG4 PCIe cards . 63

1

3.13 Mainboard PMIC . 64
3.14 Trigger system . 66

3.14.1 Trigger . 66
3.14.2 Trigger source . 67
3.14.3 Trigger sink . 67
3.14.4 File writer . 68
3.14.5 Streaming over network . 68
3.14.6 Connections . 68
3.14.7 Examples . 71

3.15 CPU . 71
3.16 RAM . 72
3.17 About . 72

4 Graphical interface 73

2

1 Introduction

FG4 Multibox (aka. MGB4) is a device, whose primary purpose is capturing/generating video streams
from/to specific hardware interfaces. For this the box uses FG4 PCIe cards, each one equipped with
appropriate interface module (e.g. FPDL3, GMSL). Both FG4 Multibox and FG4 PCIe cards are products
of Digiteq Automotive.

1.1 Main Features

• Capturing video streams
• Capturing from specific hardware interface (FPDL3, GMSL)
• Optional transformations (flip, crop, scale)
• Encoding into classical video stream (H264 or H265 in MPEG-TS)
• Encoding into pure sequence of images (PNG)
• Transmitting over network (allowing multiple clients)
• Saving to storage (SATA or USB disk)
• Live preview on external HDMI monitor (up to 4K)
• Trigger marks (custom OSD texts shown upon configured event)
• Generating video streams
• Generating to specific hardware interface (FPDL3, GMSL)
• Generating from custom image files saved on storage (SATA or USB disk)
• Generating from custom video files saved on storage (SATA or USB disk)
• Generating from predefined test patterns (solid colors, color bars, etc.)
• Live preview on external HDMI monitor (up to 4K)
• Capturing CAN messages
• CAN 2.0A (11-bit ID), CAN 2.0B (29-bit ID)
• CAN FD (flexible data rate), RTR (remote request)
• Custom filters (able to act as trigger sources)
• Encoding into CAN-UTILS ascii compact format
• Transmitting over network (allowing multiple clients)
• Saving to storage (SATA or USB disk)
• Trigger system
• Multiple trigger sources

– Hardware inputs (on change of voltage)
– CAN filters (on match)
– Timers (on shot)
– API (on invocation of dedicated action)

• Multiple trigger sinks
– Change of whatever configuration property (at API level)
– Invoke of whatever action (at API level)

• Triggers may be transmitted over network (allowing multiple clients)
• Triggers may be saved to storage (SATA or USB disk)
• Unified timestamping
• Captured video frames
• Captured CAN messages
• Triggers
• Remote control
• HTTP API (RESTlike)
• GUI (Web application)

1.2 Hardware overview

1.2.1 Main components

• System on Module (SOM)
• Mainboard

3

• PCIe switch board

1.2.1.1 System on Module (SOM) System on Module (SOM) provides the main computing power.
Currently Nvidia Jetson TX2 is used as SOM. It contains Dual-Core Nvidia Denver 2 and Quad-Core
ARM Cortex-A57 CPUs, 256-core Nvidia Pascal GPU, 8GB LPDDR4 RAM and 32GB eMMC storage.
It also contains many peripherals, but not all are used or they are used in specific configuration.

1.2.1.2 Mainboard Mainboard interconnects all participated electronic components into one func-
tional unit. Except connectors it also contains many other active elements, like power supply, power
management IC (PMIC), RTC battery, CAN drivers, etc. Especially the PMIC is very important, as it
controls the onboard power supply, power on/off sequences and also external triggers. It also provides
the ability to automatically power-on the FG4 Multibox, either when it gets connected to power supply
or when configured events occur on external triggers.

1.2.1.3 PCIe switch board PCIe switch board expands the Jetson TX2 single PCIe 2.0 x4 interface
and allows to use up to five PCIe cards.

1.3 Software overview

FG4 Multibox is Linux based device. The behavior of all subsystems (e.g. system time, video, network,
CAN), the way of connecting storage devices or handling system logs, all that stuff is Linux based
and this fact is clearly reflected in behavior of API. So it is quite common, that the API provided by
FG4 Multibox noticeably resembles the API provided by underlying Linux operating system. Also the
behavior of internal services (e.g. http server, ntp client, secure shell), the list of supported features
(e.g. file systems) or the list of supported external devices (e.g. CAN or network cards) are all closely
dependent on used Linux distribution and kernel.

Used Linux distribution:
Customized Ubuntu 18.04 (Bionic Beaver)

Used Linux kernel:
GNU/Linux 4.9.201-mgb4 aarch64, customized kernel based on Nvidia Tegra Linux, tag tegra-l4t-32.5

Although there are running many Linux services, only a few of them expose their API and also form the
core FG4 Multibox functionality.

4

https://developer.nvidia.com/embedded/jetson-tx2
https://nv-tegra.nvidia.com/r/gitweb?p=linux-4.9.git

2 Hardware interface

• 1 - Power button
• 2 - SD card
• 3 - USB
• 4 - HDMI
• 5 - CAN termination
• 6 - CAN
• 7 - External triggers
• 8 - Service interface
• 9 - Programming interface
• 10 - Ethernet
• 11 - Power supply

2.1 Power button

Short press of the power button triggers the FG4 Multibox power-on or power-off sequences. Power-
off sequence may also be triggered by API. Power-on sequence may also be triggered automatically by
Mainboard PMIC. There exist more types of power sequences and they all may be trigger only by API.
The progress of power sequences is indicated by Power button LED.

2.1.1 Power button LED

Power button LED indicates some significant states of FG4 Multibox.

• off - box off. Or start of mainboard PMIC power-on or power-cycle sequence, this usually takes a
few milliseconds.

• blue - box off (CAN triggers are active). Or waiting of mainboard PMIC for Jetson module, this
usually takes a few milliseconds.

• orange - mainboard PMIC in normal mode, waiting for operating system to be booted up and
application service to be started, this usually takes about a half of minute

• blinking orange - mainboard PMIC in bootloader mode, waiting for PMIC firmware update, this
may take a few minutes

• pink - box entered rescue mode, waiting for runtime firmware update, this may take a few minutes
• dimmed pink - box exited rescue mode, waiting for graceful reboot or power-off
• yellow - checking/updating of mainboard PMIC or FG4 cards firmware started, in case of required

update this may take a few minutes and multiple power cycles may occur
• dimmed yellow - checking/updating of mainboard PMIC or FG4 cards firmware finished
• green - application service started, box ready
• dimmed green - application service finished, waiting for graceful reload, reboot, power-cycle or

power-off

5

• red - box in error state

2.1.1.1 Power-on sequence (no firmware updates required)

1. off - very quick, barely observable by eye
2. blue - waiting for Jetson module, very quick, barely observable by eye
3. orange - waiting for operating system and application service, about 30s
4. yellow - checking of mainboard PMIC firmware started, about 500ms
5. dimmed yellow - checking of mainboard PMIC firmware finished, about 500ms
6. yellow - checking of FG4 cards firmware started, about 500ms
7. dimmed yellow - checking of FG4 cards firmware finished, about 500ms
8. green - application service started, box ready

2.1.1.2 Power-off sequence

1. dimmed green - application service finished, waiting for graceful power-off
2. off or blue - box off, LED is blue if CAN triggers are active

2.1.1.3 Power-cycle sequence

1. dimmed green - application service finished, waiting for graceful power-cycle
2. off or blue - box off, LED is blue if CAN triggers are active, about 1s
3. now the sequence continues from point 1 of Power-on sequence

2.1.1.4 Reboot sequence

1. dimmed green - application service finished, waiting for graceful reboot
2. after a while the sequence continues from point 4 of Power-on sequence

2.1.1.5 Reload sequence

1. dimmed green - application service finished
2. green - application service started, box ready

2.2 SD card

Full-size SD card interface supporting up to SDR104 card mode (UHS-1). Working with storage devices
is described in Storage chapter.

2.3 USB

USB 2.0, Type-A, Host mode. Multiple device types may be connected via USB interface. See Storage,
Network or CAN chapters to get detailed information about working with these devices.

2.4 HDMI

HDMI 2.0, Type A (standard) or C (mini), depending on particular FG4 Multibox hardware revision.
When external monitor is connected, preferred timing mode (based on EDID, resolution, frame rate,
etc.) is selected automatically. Then home window is shown. It is a borderless black window with some
useful information rendered in the top-left corner. The first line contains actual monitor resolution, the
second line contains localized date and time, and the remaining lines contain the state and IP addresses
assigned to the connected network devices. The home window may be overlapped by another windows,
e.g. all video capture and video output devices may have their own preview windows.

6

2.5 CAN termination

DIP switches, that allow to connect internal termination resistors to embedded CAN busses 1 and 2.
When the switch is in position ON (pulled down), internal rezistor 120Ω is connected between CAN high
(CANH) and CAN low (CANL) signals.

2.6 CAN

Standard 9-pin CANON male connector, that provides access to embedded CAN busses 1 and 2. The
physical layer complies with high-speed CAN (HS-CAN) as defined in ISO 11898-2:2016 and SAE J2284-1
to SAE J2284-5. FG4 Multibox contains two embedded CAN devices, the first one (usually named as
can0 in API) is connected to the bus 1, the second one (usually named as can1 in API) is connected to
the bus 2. Working with CAN devices is described in CAN chapter.

1 - not connected
2 - CAN low (CAN bus 1)
3 - CAN GND
4 - CAN low (CAN bus 2)
5 - not connected
6 - not connected
7 - CAN high (CAN bus 1)
8 - CAN high (CAN bus 2)
9 - not connected

2.7 External triggers

External triggers TR1 and TR2 are hardware inputs, that can be used to trigger various events within
the FG4 Multibox. The inputs are directly connected to Mainboard PMIC, so their properties can also
be set via Mainboard PMIC, e.g. connecting pull-up or pull-down resistors, setting the specific triggering
edge etc. They are part of Trigger system, so the mapping of events can also be set via Trigger system,
e.g. capturing the video frame, rendering the specific trigger mark in video frame etc.

Connector type: DEGSON 15EDGK-3.5-04P-14

2.7.1 Electrical characteristics

Low level input voltage : <0.8V
High level input voltage : >2.0V
Maximum input voltage : ±35.0V
Internal pull-up/down resistors : 40-130kΩ
Input current (no pull-up/down) : 3-180nA@3.3V

2.8 Service interface

USB 2.0, Micro-B, Device mode (FTDI, FT232R USB UART, idVendor=0403, idProduct=6001), 115200
8n1. This serial device provides access to the FG4 Multibox U-boot and Linux console.

2.9 Programming interface

USB 2.0, Micro-B, Device mode (NVIDIA Corp., APX, idVendor=0955, idProduct=7c18). This device
is provided by Nvidia Jetson TX2 SOM module booted in recovery mode. The interface is intended only
for Digiteq Automotive factory programming of FG4 Multibox.

7

https://developer.nvidia.com/embedded/jetson-tx2

2.10 Ethernet

Ethernet 10/100/1000 BASE-T, RJ45. Working with network devices is described in Network chapter.
This network device is usually named as eth0 in API.

2.11 Power supply

Input voltage : 10-30V DC
Idle current : 20mA@12V | Power-off state
Estimated max. power : (20 + 15𝑛) W | Heavy computing load
Estimated min. power : (13 + 10𝑛) W | No computing load

where
𝑛 - number of inserted FG4 PCIe cards

E.g.
When only one FG4 PCIe card is inserted, power supply 12V/3A should be enough.
When five FG4 PCIe cards are inserted, power supply 12V/8A should be enough.

Connector type: DEGSON 2EDGK-5.0-02P-14

8

3 Application interface

Next chapters describe the non-gui application interface, intended to be used directly from programming
languages, e.g. some automation tools or gui applications. Web application providing the GUI also uses
this API as its backend. Please, read the Services chapter first, as this describes the API fundamental
behavior and also defines the terms, that are used by all following API related chapters.

3.1 Services

Most of the FG4 Multibox functionality is executed by its internal sotware services, each one with its
special purpose. Some of these services expose their API, so they can be controlled by user. The API is
exposed in different ways, e.g. each video stream is available on its dedicated TCP server, file sharing is
done through Samba server, but the most functionality is available through HTTP server.

The most important services are:

• Application
• Logger
• Filesystem

They all expose their API and also form the core functionality of FG4 Multibox.

HTTP server listens on TCP port 80.

Samba server listens on TCP ports 139 and 445.

Dedicated TCP servers (e.g. video stream servers) have no fixed listening TCP ports, as they are config-
urable by user.

No username or password is required.

3.1.1 Application service

This is the most important service as this one is responsible for control over the biggest part of the whole
system, e.g. setting video, network and CAN interfaces, mounting storage drives etc.

Most of the functionality is available through HTTP server at URL path /api/app/*. The service also pro-
vides dedicated TCP servers (e.g. video stream servers). Next description refers only to communication
through HTTP server.

The service functions may take or return some data. In this case, data are always passed in message
body as a single JSON object. For information about JSON object see RFC8259.

The service uses the same status codes for all its functions, 200 (ok) or 202 (accepted) for success,
whatever else for a kind of error. The service itself uses only 400 (bad request), 422 (unprocessable
entity) and 500 (internal server error), but another error status codes may be returned if transaction
fails somewhere on its route, e.g. 502 (bad gateway). In case of error, the service may return detailed
error description in output data, JSON schema is available here. Status codes 202 (accepted) and 422
(unprocessable entity) are used only by actions.

The service can be viewed as hierarchy of functional objects, each one responsible for specific part of the
system. Each object has its own invokable actions, readable and writable configuration properties and
readable status properties. Mainly due to this characteristics the API is divided into separated parts.

3.1.1.1 Actions This part of API allows the object to perform an immediate activity, this is done
by invoking its action. Actions are available at URL path /api/app/actions/*. The list of currently
available (at runtime) actions can be obtained by GET verb at URL path /api/app/actions. The list
of all existing actions, including JSON schemas of input and output data, is available here. There exist
two types of actions, synchronous and asynchronous.

Synchronous action finishes immediately. It is invoked by POST verb on required action name and the
result is returned in response. Status code 200 (ok) means, that the action finished with success (output

9

https://datatracker.ietf.org/doc/html/rfc8259
res/json/app/error.schema.json
res/json/app/actions.schemas.json

data are present in response), status code 422 (unprocessable entity) means, that the action finished
with error, another status code means another kind of error (action failed in some unexpected way or
didn’t be even started).

Asynchronous action takes some time to finish, so the result is not available immediately, instead it must
be polled later. Action is invoked by POST verb on required action name. Status code 202 (accepted)
means, that the action was started (but not finished), another status code means a kind of error. Result
is obtained by GET verb on the same action name. Status code 202 (accepted) means, that the action
has not finished yet, status code 200 (ok) means, that the action finished with success (output data are
present in response), status code 422 (unprocessable entity) means, that the action finished with error,
another status code means another kind of error.

3.1.1.1.1 Examples List available actions
curl -v -X GET 'http://192.168.1.200/api/app/actions'

Get system time
curl -v -X POST 'http://192.168.1.200/api/app/actions/time/system_time/get'

Echo some JSON data
curl -v -X POST -H 'Content-Type: application/json' -d '"hello"' 'http

://192.168.1.200/api/app/actions/echo'

3.1.1.2 Configuration This part of API allows to set the object into required state, this is done
by setting its configuration properties. Configuration is available at URL path /api/app/config and
corresponding JSON schema is available here. It is possible to address only part of configuration, which
is done by specifying the appropriate JSON pointer in URL path (/api/app/config<json_pointer>, /api
/app/config/point/to/something). For information about JSON pointer see RFC6901. There are several
HTTP verbs, than can be used on configuration and that are similar to known CRUD operations:

• GET - reads existing configuration. Optional JSON pointer in URL path must point to existing
object. Output data in message body. No input data.

• PUT - updates (by replacing) existing configuration. Optional JSON pointer in URL path must
point to existing object. Input data in message body. No output data.

• PATCH - updates (by patching) existing configuration. Optional JSON pointer in URL path
must point to existing object. Input data (JSON patch) in message body. No output data. For
information about JSON patch see RFC6902

• POST - creates new configuration. Required JSON pointer in URL path must meet some criteria
to work properly. Let’s have a pointer /x/y/z. In this case object pointed by /x/y must exist and
/x/y/z will be created (if not exists yet) or replaced (if already exists). Input data in message body.
No output data.

• DELETE - deletes existing configuration. Required JSON pointer in URL path must meet some
criteria to work properly. Let’s have a pointer /x/y/z. In this case object pointed by /x/y must
exist and /x/y/z will be deleted (if exists) or nothing will be done (if not exists). No input data.
No output data.

When any method able to change the existing configuration fails, then the configuration remains in its
previous state, no partial changes are made.

The provided configuration must always be valid against the currently supported version of schema. But
there is one exception, that is called configuration import. It is allowed to provide configuration of lower
version than currently supported. In this case the configuration is imported to the current version. Note
that provided configuration of lower version still must be valid against its schema (of matching lower
version).

It was mentioned, that provided configuration must always be valid against its schema. This is the first
and fundamental check, that is performed with the received configuration. But there may be additional

10

res/json/app/config.schema.json
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6902

checks, especially in situations, that cannot be easily detected by schema. Currently there exists only
one additional check, which doesn’t allow to assign the same TCP port to multiple TCP servers.

3.1.1.2.1 Examples Get configuration of the whole system
curl -v -X GET 'http://192.168.1.200/api/app/config'

Check if NTP client is enabled
curl -v -X GET 'http://192.168.1.200/api/app/config/time/ntp/enabled'

Enable NTP client
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/time/ntp/enabled'

Enable NTP client and trigger file writer
curl -v -X PATCH -H 'Content-Type: application/json' -d '{"time":{"ntp":{"enabled":

true}},"trigger":{"file_writer":{"enabled":true}}}' 'http://192.168.1.200/api/
app/config'

3.1.1.3 Status This part of API allows to observe real state of the object, this is done by getting
its status properties. Status is available at URL path /api/app/status and corresponding JSON schema
is available here. It is possible to address only part of status, which is done by specifying the appropri-
ate JSON pointer in URL path (/api/app/status<json_pointer>, /api/app/status/point/to/something).
Getting status is done by GET verb.

Internally the status properties are updated with period of about 1 second. So it has no sense to get the
status more often.

3.1.1.3.1 Examples Get status of the whole system
curl -v -X GET 'http://192.168.1.200/api/app/status'

Check if NTP client is really running
curl -v -X GET 'http://192.168.1.200/api/app/status/time/ntp/running'

Get CPU info
curl -v -X GET 'http://192.168.1.200/api/app/status/cpu'

3.1.1.4 Schemas This part of API allows to get all JSON schemas used by the service. Schemas
are available at URL path /api/app/schemas. It is possible to address only part of schemas, which is
done by specifying the appropriate JSON pointer in URL path (/api/app/schemas<json_pointer>, /api
/app/schemas/point/to/something). Getting schemas is done by GET verb. There are four important
parts.

/api/app/schemas/error - JSON schema of error (see here)
/api/app/schemas/actions - JSON schemas of actions data (see here)
/api/app/schemas/config - JSON schema of configuration (see here)
/api/app/schemas/status - JSON schema of status (see here)

11

res/json/app/status.schema.json
res/json/app/error.schema.json
res/json/app/actions.schemas.json
res/json/app/config.schema.json
res/json/app/status.schema.json

3.1.1.5 Examples Get all JSON schemas
curl -v -X GET 'http://192.168.1.200/api/app/schemas'

Get JSON schema of error
curl -v -X GET 'http://192.168.1.200/api/app/schemas/error'

Get JSON schema of configuration
curl -v -X GET 'http://192.168.1.200/api/app/schemas/config'

3.1.2 Logger service

This service provides access to system log. These may be useful to create a more detailed look at the
whole system and possibly to help with some debugging.

The service is available through HTTP server at URL path /api/log/*. k The service uses the same
status codes for all its functions, 200 (ok) for success, whatever else for a kind of error. The service
itself uses only 400 (bad request) and 500 (internal server error), but another error status codes may be
returned if transaction fails somewhere on its route, e.g. 502 (bad gateway).

The service uses the same websocket return codes for all its websocket functions, 1000 for success,
whatever else for some kind of error. Reason string may be filled with detailed information.

The service uses the same form of passing parameters for all its functions. It uses the query string in
pretty standard form, e.g. /api/log/file?what=app&count=10.

3.1.2.1 Log file Log file can be downloaded by GET verb at URL path /api/log/file. Parameters
may be specified to control the content of the log file.

what - identifies the log source. Possible values are all (all sources), kernel (kernel source) and app
(application service source). Default value is all.

count - determines the number of required historical records to be sent. If equal -1, then all records are
sent. Default value is -1.

since, until - sents only records on or newer than the specified date, or on or older than the specified
date, respectively. Date specifications should be of the format YYYY-MM-DD HH:MM:SS. If the time
part is omitted, 00:00:00 is assumed. If only the seconds component is omitted, :00 is assumed. If
the date component is omitted, the current day is assumed. Alternatively the strings yesterday, today,
tomorrow are understood, which refer to 00:00:00 of the day before the current day, the current day, or
the day after the current day, respectively. now refers to the current time. Finally, relative times may
be specified, prefixed with - or +, referring to times before or after the current time, respectively.

3.1.2.1.1 Examples Get all records of the whole system
curl -v -X GET 'http://192.168.1.200/api/log/file'

Get today’s records of the whole system
curl -v -X GET 'http://192.168.1.200/api/log/file?since=today'

Get last 10 records of application service
curl -v -X GET 'http://192.168.1.200/api/log/file?what=app&count=10'

12

3.1.2.2 Log feed Live log can be received by connecting to websocket at URL path /api/log/feed.
Parameters may be specified to control the content of the log data.

what - identifies the log source. Possible values are all (all sources), kernel (kernel source) and app
(application service source). Default value is all.

count - determines the number of required historical records to be sent. If equal -1, then all records are
sent. Default value is 10.

follow - determines the state of log feed after sending required count of historical records. If equal 0,
then after sending required count of historical records the feed closes immediately. If equal 1, then after
sending required count of historical records the feed remains open to provide future records. Default
value is 1.

3.1.2.2.1 Examples Connect to feed of the whole system (send 10 historical records before waiting
for new records)
wscat --connect 'http://192.168.1.200/api/log/feed'

Connect to feed of the whole system (send no historical records before waiting for new records)
wscat --connect 'http://192.168.1.200/api/log/feed?count=0'

3.1.2.3 Log clear The whole log can be cleared by POST verb at URL path /api/log/clear.

3.1.2.3.1 Examples Clear log
curl -v -X POST 'http://192.168.1.200/api/log/clear'

3.1.3 Filesystem service

This service provides access to available file systems. This means either mounted devices (e.g. inter-
nal hard disk drive, USB drive, SD card) or another specific places (e.g. directory for uploading new
firmware).

The service is available through HTTP server at URL path /api/fs/*. In this case WebDAV is used to
access the file system. When GET verb is used onto existing directory, then list (in JSON format) of
files is returned. Both read and write operations may be possible.

The service is also available through HTTP server at URL path /www/fs/*. In this case the file system is
presented as ordinary static web page, so only GET verb can be used. Only read operations are possible.

The service is also available through Samba server. Both read and write operations may be possible.

3.1.3.1 Mounted devices Currently mounted devices are available at URL paths /api/fs/mounts/
and /www/fs/mounts/ in case of using HTTP server, or at URL path /mounts/ in case of using Samba
server. The top level content of these URL paths represents the storage mount points. See Storage
chapter for detailed information about storage devices and their mount points.

3.1.3.2 Firmware update There exists a special file system place, that is intended only for control
of firmware update process. This place is available at URL paths /api/fs/fw/ and /www/fs/fw/ in case
of using HTTP server, or at URL path /fw/ in case of using Samba server. See Firmware chapter for
detailed information about firmware update.

13

3.1.3.3 Examples Get list of mount points (via HTTP, WebDAV)
curl 'http://192.168.1.200/api/fs/mounts/'

Get content of firmware upload directory (via HTTP, WebDAV)
curl 'http://192.168.1.200/api/fs/fw/'

3.2 Power

FG4 Multibox power-on and power-off sequences are triggered by short press of the power button. There
exist another power operations, power-cycle, reboot and reload. Power-cycle can be viewed as sequence
of power-off and power-on operations, during this process power supply is cut off to the most of box
internal circuits. On the other hand, reboot is just hot restart, without power supply cut. Reload is least
invasive as it only restarts application service, use of this operation is intended only for debug purposes.
The progress of power sequences is indicated by Power button LED.

Power-off, power-cycle, reboot and reload operations can be triggered by remote API served by appli-
cation service, available at URL path /api/app/actions/power/*. Just call appropriate nonparametric
synchronous action

• /api/app/actions/power/poweroff
• /api/app/actions/power/powercycle
• /api/app/actions/power/reboot
• /api/app/actions/power/reload

3.2.1 Examples

Power-off
curl -v -X POST 'http://192.168.1.200/api/app/actions/power/poweroff '

Reboot
curl -v -X POST 'http://192.168.1.200/api/app/actions/power/reboot'

3.3 Firmware

There exist two main types of FG4 Multibox firmware packages. The first one is factory package, which is
intended to be installed only in Digiteq Automotive company. This package contains all possible firmware
components, e.g. boot configuration tables, bootloaders, rescue and application file systems, PMIC and
FG4 card firmwares, etc. The second one is runtime package, which is intended to be installed by ordinary
users. This package contains subset of factory package. Only runtime firmware update is described in
this manual.

3.3.1 FG4 Multibox firmware update

First, the firmware package mgb4-install.tgz must be uploaded to FG4 Multibox. This can be done by
remote API served by filesystem service, either by using HTTP (WebDAV) server available at URL path
/api/fs/fw/ or by using Samba server at URL path /fw/. In fact, both URL paths reference the same
directory on the internal eMMC storage. So just upload the firmware package to this directory.

Second, to appropriately execute the update process, some control flags must be given. These control
flags are represented by pure empty files, located at the same place as firmware package is uploaded.
To start the update process on next boot, create empty file named as mgb4-flash. To keep previous
configuration, create empty file named as mgb4-keep.

Finally, reboot FG4 Multibox. Next boot, if control flag mgb4-flash is found, box enters rescue mode
(indicated by pink power button LED) and if firmware package is found, update process is started.

14

When the process is finished (may take several minutes), box reboots into new system. During this boot
another reboots may occur as mainboard PMIC and FG4 cards firmware update (indicated by yellow
power button LED) may be required. When the power button LED is green, box is ready.

Runtime firmware update may be also accomplished by using SD card. Just copy the firmware package
mgb4-install.tgz to the first partition (fat, ext2/3/4) and create control flag mgb4-flash. Control flag
mgb4-keep is ignored, keeping previous configuration doesn’t work in this case. Then put the card into the
box and power-on. From this point the firmware update continues similar to update by API. However,
in this case the box shuts down when the process finishes.

3.3.1.1 Examples Get content of firmware upload directory
curl 'http://192.168.1.200/api/fs/fw/'

Firmware update (upload firmware package, upload control flags and reboot)
curl -T 'mgb4-install.tgz' 'http://192.168.1.200/api/fs/fw/'
curl -T 'mgb4-keep' 'http://192.168.1.200/api/fs/fw/'
curl -T 'mgb4-flash' 'http://192.168.1.200/api/fs/fw/'
curl -v -X POST 'http://192.168.1.200/api/app/actions/power/reboot'

3.3.2 FG4 card firmware update

Each boot all plugged FG4 cards are checked if they contain valid firmware. Each FG4 card containing
invalid firmware is updated automatically. The process of checking and possible updating is indicated
by yellow power button LED. FG4 card firmware is considered as valid if it corresponds to the plugged
module/interface (FPDL3, GMSL, …) and if its version matches the one required by the box. Each FG4
Multibox contains its own list of FG4 card firmwares, that are marked as compatible and that are used
for automatic FG4 card firmware update. For special use cases, the automatic firmware update may be
disabled or even custom list of firmwares may be provided. To disable automatic firmware update create
empty directory mgb4-fg4-firmware at the same place as FG4 Multibox firmware is uploaded, at URL
path /api/fs/fw/ if using HTTP (WebDAV) server or at URL path /fw/ if using Samba server. Note
that overriding the normal behavior may lead to incompatible FG4 Multibox and FG4 card firmwares.
To finish the possible firmware update box must be rebooted, which is also done automatically. It may
happen, that something goes wrong during firmware update, in this case the box tries it again several
times. If it fails anyway, the box ends up with red power button LED, in this case the automatic firmware
update must be disabled or the card must be removed. See FG4 PCIe cards for detailed information
about FG4 card parameters.

3.4 Configuration

The configuration of FG4 Multibox is a very complex topic, that can be described from many different
perspectives. The first one involves the common features of Configuration API of Application service.
The second one involves particular thematic components (video, network, storage, time, etc.) and can
be seen across multiple chapters. Other perspectives, that involves other specific features are described
in this chapter.

3.4.1 Configuration update

FG4 Multibox never adds/removes configurations for newly connected/disconnected physical devices au-
tomatically. It is always up to user to check the status, to see all present devices and to decide what
to add/remove to/from the configuration. To make the situation with newly connected devices easier,
there exists a way how to add configurations for not yet configured devices. Just call nonparametric syn-
chronous action /api/app/actions/config/update. Next getting of /api/app/config returns the updated
configuration. Configuration update involves devices at JSON pointers /network/devices, /can/devices,
/video/captures and /video/outputs.

15

3.4.2 Configuration reset

Sometimes it may be desired to return the configuration to its factory state (see here). To do it via API
just call nonparametric synchronous action /api/app/actions/config/reset. Next getting of /api/app/
config returns the factory configuration. To do it via SD card just create empty file mgb4-reset-config
on the first partition, then insert the card to the box and reboot. Next getting of /api/app/config returns
the factory configuration. Besides that, a specific custom configuration may be imported via SD card
during boot. Just create empty file mgb4-reset-config on the first partition (as by factory reset) and
also create file mgb4-config.json containing the custom configuration.

3.4.3 Devices

Basically there are two types of devices, system-managed and user-managed.

System-managed device is a device (usually physical), whose life cycle is controlled by operating system.
Its name is assigned by system and cannot be changed in any way. No special consideration about its
form (naming scheme) should be done, it is just a key identifying the device. Never ever parse the name
to get any sort of information about the device. Existing system-managed device is always shown in
status, regardless of being in configuration. System-managed devices are available at JSON pointers
/network/devices, /can/devices, /video/captures, /fg4/devices, /video/outputs, /storage/disks and
/storage/disks/<name>/partitions.

User-managed device is a device (usually virtual), whose life cycle is controlled by user. Its name is
assigned by user, the form of name is also up to user, usually it only must be a string. Usually user
can create as many user-managed devices as he wants. User-managed device is shown in status only
when it exists in configuration. User-managed devices are available at JSON pointers /can/captures,
/timer/devices and /storage/mounts.

3.4.4 Examples

Update configuration (add not yet configured devices)
curl -v -X POST 'http://192.168.1.200/api/app/actions/config/update'

Reset configuration (to factory state)
curl -v -X POST 'http://192.168.1.200/api/app/actions/config/reset'

3.5 Logger

The whole system log may be accessed via Logger service. Although the system log has many sources,
the most important one is the Application service. This chapter describes how to set the logger of this
service. The logger configuration is located at JSON pointer /logger.

Snippet of logger configuration (at JSON pointer /logger)
{

"filter": {
"severity": "error",
"components" : ["mgb4", "netctl"],
"threads" : ["main", "netctl"]

}
}

Item severity is required and is also known as log level. Possible severities (sorted from lowest to highest)
are trace, debug, info, warning, error and fatal. Only messages that are equal or higher then configured
severity are logged. Be very careful with trace severity as it may generate a really huge amount of
messages, e.g. each streamed video frame buffer generates multiple messages. For most debug cases, only
debug or info severity should be enough.

16

res/json/app/config.json

Item components is optional and contains the names of components, that should be logged. When
omitted, then all components are logged. Item threads is optional and contains the names of threads,
that should be logged. When omitted, then all threads are logged. Both component and thread names
are very internal and volatile attributes, not to be listed in this manual.

Item filter is optional and when omitted, then severity is defaulted to error and all components
and threads are logged. Each message from application service has this form: thread |compo-
nent|severity|message

3.5.1 Examples

Get logger configuration
curl -v -X GET 'http://192.168.1.200/api/app/config/logger'

Set logger configuration
curl -v -X POST -H 'Content-Type: application/json' -d '{"filter":{"severity":"info

"}}' 'http://192.168.1.200/api/app/config/logger'

3.6 Time

In general there exist multiple sources of time in FG4 Multibox, but only two of them are really important.
The first one is system time, that provides information about current date and time. The second one
is a special monotonic time, that is primarily used for timestamping of events. Time configuration and
status are located at JSON pointer /time.

Snippet of time configuration (at JSON pointer /time)
{

"ntp": {
"enabled": true,
"servers": [

"0.cz.pool.ntp.org",
"1.cz.pool.ntp.org",
"2.cz.pool.ntp.org",
"3.cz.pool.ntp.org"

]
},
"timezone": "Europe/Prague"

}

Snippet of time status (at JSON pointer /time)
{

"ntp": {
"root_delay": 11200778,
"root_dispersion": 36780,
"running": true,
"source": {

"name": "82.202.70.139",
"stratum": 1

},
"system_time_error": 6670096,
"system_time_offset": -1032927,
"system_time_synchronized": true

},
"system_time": "2023-12-07T13:26:08+01:00"

}

17

3.6.1 System time

System time (aka real-time clock or RTC) provides information about current date and time. Basically
it can be controlled in two ways, either it can be directly set to specific value or it is controlled by NTP
server.

To set the specific time value just call parametric synchronous action /api/app/actions/time/system_time
/set with parameter containing the time value. To get the current time value just call nonparametric
synchronous action /api/app/actions/time/system_time/get, the time value is then contained in response.
In both cases the time value must comply with full date and time according to ISO 8601, e.g. “2023-12-
07T13:26:08+01:00”. Setting the time by mentioned action has no effect when NTP is enabled.

To enable NTP, just fill the servers with desired NTP servers and set enabled to true. The NTP status
properties are:

running - If true, then NTP is running.

system_time_synchronized - If true, then time is beeing synchronized.

system_time_error - Time error (in nanoseconds). Valid only if NTP is synchronized. Computed by
formula: abs(system_time_offset) + root_dispersion + (root_delay / 2).

system_time_offset - Time offset (in nanoseconds). Valid only if NTP is synchronized.

root_delay - Root delay (in nanoseconds). Valid only if NTP is synchronized.

root_dispersion - Root dispersion (in nanoseconds). Valid only if NTP is synchronized.

source - Time source currently used for synchronization.

source/name - Name (IP address).

source/stratum - Stratum.

As for NTP status, only running and system_time_synchronized properties are required, the other ones
are present only if NTP is running.

It is quite important to have well-adjusted system time. If not, then interaction with FG4 Multibox may
be very confusing at some points. Especially Logger service may be affected as it uses system time to
timestamp the messages.

3.6.2 Monotonic time

Monotonic time is a special type of time, implemented by monotonically increasing counter, that starts
its counting at some point during FG4 Multibox boot sequence. It is primarily used for timestamping of
various events, so they can be mutually synchronized. Although the timestamps are usually expressed in
micro or nanoseconds, the actual precision is much lesser, typically in ones or even tens of milliseconds.
It depends on the actual moment the timestamp is assigned, it also depends on the whole system load.
Currently this time is used for timestamping of captured video frames, CAN messages or triggers. There
is no configuration or status.

3.6.3 Examples

Set current time
curl -v -X POST -H 'Content-Type: application/json' -d '"2023-12-07T15

:08:32+01:00"' 'http://192.168.1.200/api/app/actions/time/system_time/set'

Get current time (by calling action)
curl -v -X POST 'http://192.168.1.200/api/app/actions/time/system_time/get'

Get current time (by getting status)
curl -v -X GET 'http://192.168.1.200/api/app/status/time/system_time '

18

3.7 Network

Network configuration and status are located at JSON pointer /network. Configuration and status of
particular network devices are located at JSON pointer /network/devices. FG4 Multibox contains one
embedded network device, usually named as eth0. The name of embedded network device may change
if another network device is connected. This usually happens when the device is connected via PCI. On
the other hand, this usually doesn’t happen when the device is connected via USB. Network devices are
System-managed, so their names are fully controlled by operating system.

Snippet of network configuration and status (at JSON pointer /network)
{

"devices": {
"eth0": {...},
"eth1": {...},
"eth2": {...}

}

Snippet of network device configuration (at JSON pointer /network/devices/eth0)
{

"addresses": [
{

"address": "192.168.1.226/24",
"scope": "global"

}
],
"dhcp4_server": {

"enabled": false,
"pool_offset": 100,
"pool_size": 32

},
"dhcp_client": {

"enabled": false,
"metric": 1024,
"type": "ipv4"

},
"enabled": true,
"nameservers": [

"192.168.1.1"
],
"routes": [

{
"destination": "0.0.0.0/0",
"gateway": "192.168.1.1",
"metric": 0,
"scope": "global"

}
]

}

Snippet of network device status (at JSON pointer /network/devices/eth0)
{

"addresses": [
{

"address": "192.168.1.226/24",
"dynamic": false,
"scope": "global",
"secondary": false

},
{

"address": "fe80::4ab0:2dff:fe48:d0d7/64",
"dynamic": false,

19

"scope": "link",
"secondary": false

}
],
"mac_address": "48:b0:2d:48:d0:d7",
"operational_state": "up"

}

Each network device may have assigned multiple IPv4 and IPv6 addresses, routes and name servers,
either statically (by user) or dynamically (by DHCP server). Each network device is able to provide
DHCPv4 server. When the network device is enabled and has assigned static IP address (minimum
useful configuration), it also has to be connected to real functional network to see both the expected up
operational state and configured IP address in status.

To enable network device just set enabled to true. Real device state can be observed in status oper-
ational_state, which can be one of these values unknown, notpresent, down, lowerlayerdown, testing,
dormant and up. Typically only down and up are used most of the time.

To set static IP addresses fill addresses array. Each item contains IPv4 or IPv6 address (in CIDR
notation) and its scope (global, link, host). If there are any doubts about address scope, go with global
value. All assigned addresses can be observed in status addresses. Except address and scope there are
some additional items. Item dynamic is true if address is assigned by DHCP server. Item secondary is
true if address is so called secondary (aliased, not primary). Each network device may have assigned
only one primary IPv4 and one primary IPv6 address, so additionally assigned addresses to the same
network device are considered as secondary ones.

To set static routes fill routes array. Each item contains destination prefix (IP address in CIDR notation,
use 0.0.0.0/0 (IPv4) or ::/0 (IPv6) to specify all possible addresses), gateway IP address, metric (unsigned
integer, lower value means higher priority) and scope (global, link, host). If there are any doubts about
route scope, go with global value. Optionally source prefix (IP address) may be set.

To set static name servers fill nameservers array. Each item represents IP address of name server.

To set dynamic IP addresses (also routes and name servers) from DHCP server configure DHCP client
at dhcp_client. To have working DHCP client set type to requied IP address protocol version (ipv4, ipv6,
dual), also set metric (unsigned integer, lower value means higher priority) to dynamically created route
and finally set enabled to true.

Each network device is able to provide DHCPv4 server, configurable at dhcp4_server. To have working
DHCPv4 server just set enabled to true. There are also some optional items allowing to configure the
pool of IP addresses (to be leased). Item pool_offset represents the offset of the pool from the start
of subnet. If omitted or zero, then the pool starts at the first address after the subnet address. Item
offset_size represents number of addresses in the pool. If omitted or zero, then the pool takes up the
rest of the subnet.

3.7.1 Examples

Get status of network device eth0
curl -v -X GET 'http://192.168.1.200/api/app/status/network/devices/eth0'

Set static IPv4 address to network device eth1
curl -v -X POST -H 'Content-Type: application/json' -d '[{"address

":"192.168.2.200/24","scope":"global"}]' 'http://192.168.1.200/api/app/config/
network/devices/eth1/addresses

Enable network device eth1
curl -v -X POST -H 'Content-Type: application/json' -d 'true' 'http

://192.168.1.200/api/app/config/network/devices/eth1/enabled'

20

3.8 Storage

Storage configuration and status are located at JSON pointer /storage. The API is divided into two
main parts. The first one (named as Disks) provides information about all connected storage devices.
The second one (named as Mounts) allows to mount (attach) specified storage devices to their mount
points (directories) and thus allowing access to them.

Snippet of storage configuration (at JSON pointer /storage)
{

"mounts": {...}
}

Snippet of storage status (at JSON pointer /storage)
{

"disks": {...},
"mounts": {...}

}

3.8.1 Disks

Information about all connected storage devices is available in status at JSON pointer /storage/disks.
There is no configuration available.

Snippet of disks status (at JSON pointer /storage/disks)
{

"mmcblk2": {
"partitions": {

"mmcblk2p1": {
"fstype": "vfat",
"label": "SDCARD",
"partuuid": "7de4bdea -01",
"size": 15551430656,
"uuid": "30D4-034F"

}
},
"size": 15552479232

},
"sda": {

"model": "Samsung SSD 870 ",
"partitions": {

"sda1": {
"fstype": "ext4",
"label": "SATADISK",
"partuuid": "0f58d681 -01",
"size": 500106813440,
"uuid": "a91b29f2 -e8d4-4353-bbc9 -7777d9f7cdf9"

}
},
"size": 500107862016,
"vendor": "ATA "

},
"sdb": {

"model": "VoyagerGT ",
"partitions": {

"sdb1": {
"fstype": "vfat",
"label": "FLASH",
"partuuid": "d353cb65 -01",
"size": 16239296512,
"uuid": "40EB-8311"

21

}
},
"size": 16240345088,
"vendor": "Corsair "

},
"sdc": {

"fstype": "vfat",
"label": "FLASH",
"model": "Cruzer Fit ",
"size": 8002732032,
"uuid": "E8CB -810D",
"vendor": "SanDisk "

}
}

Storage devices are System-managed, so their names are fully controlled by operating system. Usually
SATA and USB device names are in form of sdX, where X is an alphabetical character distinguishing
the devices and respecting their connection order (the first device has assigned name sda, the second
one has assigned name sdb, etc.). Usually MMC device names are in form of mmcblkX, where X is a
number distinguishing the devices and respecting their connection order (the first device has assigned
name mmcblk0, the second one has assigned name mmcblk1, etc.). FG4 Multibox already contains some
private embedded MMC devices, so the first user connected device is named as mmcblk2 (actually this
is also the last one as FG4 Multibox contains only one physical SD card interface).

Each storage device may contain partitions, which are also system-managed devices. Usually partition
names of SATA and USB storage device are constructed by appending partition number to storage device
name (sda device may contain partitions named as sda1, sda2, etc.). Usually partition names of MMC
storage device are constructed by appending character p and partition number to storage device name
(mmcblk2 device may contain partitions named as mmcblk2p1, mmcblk2p2, etc.).

The type of file system is given by item fstype. When this item exists, the file system is known and the
corresponding storage device or partition is mountable. Note that there may exist storage device, that
doesn’t contain any partitions (no partition table), but still it may be mountable. In this case the item
fstype is contained at root level of storage device, see sdc device in previous snippet.

All sizes are in bytes.

3.8.2 Mounts

Mounts configuration and status are located at JSON pointer /storage/mounts.

Snippet of mounts configuration (at JSON pointer /storage/mounts)
{

"ramdisk": {
"device": "tmpfs",
"enabled": true,
"options": "size=128M"

},
"satadisk": {

"device": "sda1",
"enabled": true

},
"sdcard": {

"device": "mmcblk2p1",
"enabled": true

},
"usbdisk": {

"device": "sdb1",
"enabled": false

},
"usbdisk_private": {

"device": "uuid=40EB-8311",

22

"enabled": true
}

}

Snippet of mounts status (at JSON pointer /storage/mounts)
{

"ramdisk": {
"device": "tmpfs",
"size": {

"total": 134217728,
"used": 0

}
},
"satadisk": {

"device": "sda1",
"size": {

"total": 491182030848,
"used": 75509760

}
},
"sdcard": {

"device": "mmcblk2p1",
"size": {

"total": 15536226304,
"used": 476225536

}
},
"usbdisk_private": {

"device": "sdb1",
"size": {

"total": 16223436800,
"used": 16384

}
}

}

To have access to connected storage device, it must be mounted (attached) to specified mount point
(directory). The content of storage device can be then accessed via Filesystem service. To mount the
storage device, just create/update appropriate object in configuration at JSON pointer /storage/mounts.
The key represents mount point and the value contains device to be mounted (item device, required),
enabled flag (item enabled, required), file system type (item fstype, optional) and mount options (item
options, optional). Mount point name is just an user defined string, but it must not be empty and it
must not contain the forward slash character “/” (ASCII 0x2F). The only required items specifying the
mounted device are device name and enabled flag. In most cases file system is detected automatically and
mount options are not required at all. Device name is either the partition name (in case of partitioned
disk, can be found in status at JSON pointer /storage/disks/<disk_name>/partitions/<partition_name>)
or the disk name (in case of not partitioned disk, can be found in status at JSON pointer /storage/disks
/<disk_name>). When (and only when) the device is really mounted to its mount point, it is also present
in status at JSON pointer /storage/mounts. The key represents mount point and the value contains
name of mounted device (item name, required) and size information (item size, required).

The device can also be mounted by specifying its uuid, label, partuuid or partlabel, can be found
in status at JSON pointers /storage/disks/<disk_name>/partitions/<partition_name>/uuid|label|
partuuid|partlabel or /storage/disks/<disk_name>/uuid|label. In this case specify the device name
as uuid=<value>, label=<value>, partuuid=<value> or partlabel=<value>. This kind of device
specification provides solution for unpredictable disk and partition names.

There exists a very special mountable storage device, that stores data in physical RAM, often simply
called as ramdisk. It is very fast, but also volatile and very limited in size. The name of this device is
tmpfs. The contained file system is also tmpfs. The size of mounted device can be set by mount option
size=<value><unit>. The unit can be one of K, M or G, for value in kibi, mebi or gibi bytes. The
unit can also be %, for value in percentage of physical RAM. When no unit is specified, then value

23

is considered in bytes. When no size option is specified, then it is defaulted to size=50%. Note that
the required size is always rounded up to multiple of entire physical RAM page, which is 4096 bytes.
The special tmpfs device can be mounted multiple times at the same time. Don’t set the size to large
numbers, the system may then start to behave in a very non-standard way (when the Linux system is
out of memory, it may start swapping or OOM killer may be triggered or something worse may happen).

The item options contains comma-separated mount options. In most cases they are not required at all.
Actually the options string is directly given to the Linux ‘mount’ command, so any supported option
may be given here. Be careful when using this parameter. When mounting tmpfs device, its size may be
specified by size option (see the above paragraph). When read-only mounting is required, then add ro
option. When mounting fat file system, then utf8 option may be useful.

Supported file systems: vfat (fat16/32), exfat, ntfs, ext2, ext3, ext4, tmpfs.

All sizes are in bytes.

ATTENTION:
Be sure the storage device is unmounted before disconnecting from FG4 Multibox. Othewise some data
may get lost or even the file system may get corrupted. When the storage device is instructed to be
unmounted, but it still remains mounted, then in most cases it is actually still used. Maybe some files
remain still open, maybe some data are not yet completely flushed to storage.

3.8.3 Examples

Get list of connected storage devices
curl -v -X GET 'http://192.168.1.200/api/app/status/storage/disks'

Get list of mounted storage devices (mount points)
curl -v -X GET 'http://192.168.1.200/api/app/status/storage/mounts'

Create configuration for mounting to mount point mntpt (device to be mounted is set to sda1, but the
mounting is still disabled for now)
curl -v -X POST -H 'Content-Type: application/json' -d '{"device":"sda1","enabled":

false}' 'http://192.168.1.200/api/app/config/storage/mounts/mntpt'

Enable mounting to mount point mntpt (when the device is connected and contains supported file system,
it will be mounted)
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/storage/mounts/mntpt/enabled'

Disable mounting to mount point mntpt (when the device is mounted, it will be unmounted)
curl -v -X PUT -H 'Content-Type: application/json' -d 'false' 'http

://192.168.1.200/api/app/config/storage/mounts/mntpt/enabled'

Delete configuration for mounting to mount point mntpt
curl -v -X DELETE 'http://192.168.1.200/api/app/config/storage/mounts/mntpt'

Get list of mount points (using Filesystem service, via HTTP, WebDAV)
curl 'http://192.168.1.200/api/fs/mounts/'

3.9 Video

Video configuration and status are located at JSON pointer /video. The API consists of two main parts.
The first one (named as video captures) represents the video pipelines, responsible for receiving video
frames from physical device (e.g. any video input located on FG4 card’s FPDL3/GMSL interface), encod-
ing them and transmitting via network or saving to storage. The second one (named as video outputs)

24

represents the video pipelines, responsible for reading video frames from specified source (e.g. video file,
image file or test pattern generator) and transmitting them to physical device (e.g. any video output
located on FG4 card’s FPDL3 interface). Each capture and output pipeline is identified by its unique
name (/video/captures/<name>, /video/outputs/<name>). Actually this name is also the name of phys-
ical device, the video frames are received from or transmitted to. It simply means, that each capture
and output pipeline has its own associated physical device. Both the capture and output pipelines are
System-managed devices, so their names (and consequently the names of associated physical devices) are
fully controlled by operating system.

Snippet of video configuration and status (at JSON pointer /video)
{

"captures": {
"fg4_001 -003-001-018_i0": {...},
"fg4_001 -003-001-018_i1": {...}

},
"outputs": {

"fg4_001 -003-001-018_i0": {...},
"fg4_001 -003-001-018_i1": {...}

}
}

3.9.1 Video captures

Next picture shows the component diagram of complete video capture pipeline, with arrows indicating
the flow of video frames. Red labels are the names of corresponding objects in configuration and status
JSONs, their simplified snippets are shown below the diagram.

Snippet of video capture pipeline configuration (at JSON pointer /video/captures/fg4_001-003-001-018
_i0)
{

"enabled": true,
"capture": {

"fg4": {...}
},

25

"converter": {...},
"preview": {...},
"sinks": {

"image": {
"enabled": false,
"triggered_mode": false,
"encoder": {...},
"file_writer": {...},
"tcp_server": {...},
"tcp_session": {...}

},
"video": {

"enabled": true,
"encoder": {...},
"muxer": {...},
"file_writer": {...},
"tcp_server": {...},
"tcp_session": {...}

}
},
"stats": {

"osd": {...}
},
"trigger_mark": {...}

}

Snippet of video capture pipeline status (at JSON pointer /video/captures/fg4_001-003-001-018_i0)
{

"running": true,
"capture": {

"fg4": {...}
},
"preview": {...},
"sinks": {

"image": {
"running": false,
"file_writer": {...}

},
"video": {

"running": true,
"file_writer": {...}

}
}

}

To enable the video capture pipeline, just set enabled to true. See running property in status to get the
real state of video capture pipeline. If the running property is true, then at least capture device is running
(i.e. video frames are captured from the associated physical device). Preview and individual sinks have
their own separate enable property. To have the running video capture pipeline, some conditions must
be met. Primarily the video capture pipeline must be enabled, the associated physical device must exist
and must be ready to provide the video stream (i.e. in case of grabber device, there must be a valid video
signal on its input interface).

The following links help to navigate to particular pipeline components (and other stuff).

• Capture device
• Converter
• Preview
• Video sink

– Encoder
– Muxer
– File writer

26

– Streaming over network
• Image sink

– Encoder
– File writer
– Streaming over network

• Statistics
• Trigger mark
• Timestamps
• Queuing buffers
• Examples

3.9.1.1 Capture device Currently only one type of physical capture device is supported, namely
FG4. So this chapter covers only working with FG4. The configuration and status are located at JSON
pointer /video/captures/<name>/capture/fg4.

Snippet of video capture device configuration (at JSON pointer /video/captures/fg4_001-003-001-018
_i0/capture/fg4)
{

"format": {
},
"interface": {

"fpdl3": {
"color_mapping": "spwg_vesa",
"fpdl3_input_width": "automatic",
"frequency_range": "pll_greater_or_equal_50mhz",
"hsync_gap_length": 1000,
"oldi_lane_width": "dual",
"vsync_gap_length": 2

},
"gmsl": {

"color_mapping": "spwg_vesa",
"frequency_range": "pll_greater_or_equal_50mhz",
"gmsl_fec": "enabled",
"gmsl_mode": "br_12000M",
"gmsl_stream_id": 1,
"hsync_gap_length": 1000,
"oldi_lane_width": "dual",
"vsync_gap_length": 2

}
}

}

Snippet of video capture device status (at JSON pointer /video/captures/fg4_001-003-001-018_i0/
capture/fg4)
{

"format": {
"fourcc": "AR24",
"rate": [

150336000,
2391660

],
"size": [

1920,
1080

]
},
"format_descriptions": [

{
"fourcc": "AR24",
"rates": [

[

27

150336000,
2391660,
125000000,
4294967295,
125000000,
1

]
],
"size": [

1920,
1080

]
},
{

"fourcc": "YUYV",
"rates": [

[
150336000,
2391660,
125000000,
4294967295,
125000000,
1

]
],
"size": [

1920,
1080

]
}

],
"interface": {

"fpdl3": {
"color_mapping": "spwg_vesa",
"fpdl3_input_width": "automatic",
"frequency_range": "pll_greater_or_equal_50mhz",
"hback_porch": 50,
"hfront_porch": 50,
"hsync_gap_length": 1000,
"hsync_status": "active_low",
"hsync_width": 40,
"input_id": 0,
"link_status": "locked",
"oldi_lane_width": "dual",
"pclk_frequency": 150338,
"stream_status": "detected",
"vback_porch": 31,
"vfront_porch": 30,
"video_height": 1080,
"video_width": 1920,
"vsync_gap_length": 2,
"vsync_status": "active_low",
"vsync_width": 20

}
},
"parent_device": "001-003-001-018"

}

This type of video capture is a part of FG4 card (actually it represents an input of the interface module),
so there exists a reference to this card, property parent_device. It contains the name of parent FG4 card,
whose properties can be found at JSON pointer /fg4/devices/<name>. See FG4 PCIe cards chapter to
get detailed information.

28

3.9.1.1.1 Format In general a capture device acts as essential source of video frames for the whole
video capture pipeline. Only when the element format is present in status, the capture device is ready to
provide the video stream (i.e. in case of FG4 card there is a valid video signal on its input interface). The
format describes the stream, that is provided by the capture device. When the pipeline is running, then
format describes the actually flowing stream. When the pipeline is not running, then format describes
the stream, that will be flowing when the pipeline is enabled (and consequently running) and no custom
format is specified. The format has these properties:

fourcc - Pixel format represented as FourCC.

size - Frame size [width, height], in pixels.

rate - Frame rate represented as rational number [num, den], in frames per second.

It is allowed to specify a custom format. If the element format is present in configuration, the capture
device tries to provide the stream in specified format. If the specified format cannot be used, then some
other is used. Again, when pipeline is running, check format in status to get the actually used format.
In configuration the element format is optional and also its all three sub-elements fourcc, size and rate
are optional. Currently only fourcc and rate are evaluated, size is ignored. Possible format values can be
determined from status element format_descriptions. It is actually an array of allowed formats, where
each element has these properties:

fourcc - Pixel format represented as FourCC.

size - Frame size, in pixels. It is represented as [width, height] in case of discrete size, or as [min_width,
min_height, max_width, max_height, step_width, step_heigth] in case of step-wise size.

rates - Array of frame rates, in frames per second. Each one is represented as [num, den] in case of discrete
rate, or as [max_num, max_den, min_num, min_den, step_num, step_den] in case of step-wise rate.
In calculations step must be used as period (not frame rate), with flipped numerator and denominator,
e.g. 𝑐𝑢𝑠𝑡𝑜𝑚_𝑟𝑎𝑡𝑒 = 1/(𝑚𝑖𝑛_𝑑𝑒𝑛/𝑚𝑖𝑛_𝑛𝑢𝑚 + 10 ∗ 𝑠𝑡𝑒𝑝_𝑑𝑒𝑛/𝑠𝑡𝑒𝑝_𝑛𝑢𝑚).

Element fourcc may contain only AR24 or YUYV. Pixel format AR24 is ABGR with four bytes per
pixel, pixel format YUYV is YUV 4:2:2 with four bytes per two pixels. So the YUYV takes only
half the bandwidth compared to AR24. On the other hand it may loose some information, because
e.g. FPDL3/GMLS interfaces use the RGB with three bytes per pixel. Omit the fourcc to use the default
AR24.

Element rate may be used to set a custom fixed frame rate, which must always be less than the one
being captured on hardware interface. It may be useful to reduce the bandwith. Omit the rate to use
the value captured on interface.

Element size is ignored as it is always used the value captured on interface.

Specifying the custom pixel format may be effectively used only for affecting the bandwith on PCIe.
After capturing into the pipeline the pixel format is always transformed to the format required by the
following pipeline components, e.g. video stream (H264, H265) uses YM12 (YUV 4:2:0 planar).

NOTE:
Firmware version 1.0 doesn’t support specifying custom format. It always uses the AR24 pixel format
and the frame size and frame rate captured on interface.

3.9.1.1.2 Interface Each FG4 card may contain an interchangable part named as interface module
(or just interface). Each interface may contain one or more video inputs. Each video input is represented
by this capture device. Check the status interface element to get the actually used interface type (it
contains exactly one sub-element, fpdl3 or gmsl). Each interface contains a number of properties, whose
actual values are available in status. Some of them can be set to custom value, just put the property into
configuration. To use the default (or last set) value, just omit the property from configuration. Currently
FPDL3 and GMSL interfaces are supported.

FPDL3 interface

List of all existing properties (available in status):

input_id - integer. Input number ID, zero based.

29

https://fourcc.org
https://fourcc.org

oldi_lane_width - string enum (single, dual). Number of deserializer output lanes.

color_mapping - string enum (oldi_jeida, spwg_vesa). Mapping of the incoming bits in the signal to the
colour bits of the pixels.

link_status - string enum (unlocked, locked). Video link status. If the link is locked, chips are properly
connected and communicating at the same speed and protocol. The link can be locked without an active
video stream.

stream_status - string enum (not_detected, detected). Video stream status. A stream is detected if the
link is locked, the input pixel clock is running and the DE signal is moving.

video_width - integer. Video stream width. This is the actual width as detected by the HW.

video_height - integer. Video stream height. This is the actual height as detected by the HW.

vsync_status - string enum (active_low, active_high, not_available). The type of VSYNC pulses as
detected by the video format detector.

hsync_status - string enum (active_low, active_high, not_available). The type of HSYNC pulses as
detected by the video format detector.

vsync_gap_length - integer. If the incoming video signal does not contain synchronization VSYNC and
HSYNC pulses, these must be generated internally in the FPGA to achieve the correct frame ordering.
This value indicates, how many empty pixels (pixels with deasserted Data Enable signal) are necessary
to generate the internal VSYNC pulse.

hsync_gap_length - integer. If the incoming video signal does not contain synchronization VSYNC
and HSYNC pulses, these must be generated internally in the FPGA to achieve the correct frame
ordering. This value indicates, how many empty pixels (pixels with deasserted Data Enable signal) are
necessary to generate the internal HSYNC pulse. The value must be greater than 1 and smaller than
vsync_gap_length.

pclk_frequency - integer. Input pixel clock frequency in kHz.

hsync_width - integer. Width of the HSYNC signal in PCLK pulses.

vsync_width - integer. Width of the VSYNC signal in video lines.

hback_porch - integer. Number of PCLK pulses between deassertion of the HSYNC signal and the first
valid pixel in the video line (marked by DE=1).

hfront_porch - integer. Number of PCLK pulses between the end of the last valid pixel in the video line
(marked by DE=1) and assertion of the HSYNC signal.

vback_porch - integer. Number of video lines between deassertion of the VSYNC signal and the video
line with the first valid pixel (marked by DE=1).

vfront_porch - integer. Number of video lines between the end of the last valid pixel line (marked by
DE=1) and assertion of the VSYNC signal.

frequency_range - string enum (pll_less_than_50mhz, pll_greater_or_equal_50mhz). PLL frequency
range of the OLDI input clock generator. The PLL frequency is derived from the Pixel Clock Frequency
(PCLK) and is equal to PCLK if oldi_lane_width is set to single and PCLK/2 if oldi_lane_width is set
to dual.

fpdl3_input_width - string enum (automatic, single, dual). Number of deserializer input lines.

List of configurable properties (may occur in configuration):

oldi_lane_width
color_mapping
vsync_gap_length
hsync_gap_length
frequency_range
fpdl3_input_width

The frame rate may be computed by the formula:

30

𝑓𝑟𝑎𝑚𝑒_𝑟𝑎𝑡𝑒 = 𝑝𝑐𝑙𝑘_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 1000/(𝑡𝑜𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ ∗ 𝑡𝑜𝑡𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡)
𝑡𝑜𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ = 𝑣𝑖𝑑𝑒𝑜_𝑤𝑖𝑑𝑡ℎ + ℎ𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + ℎ𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ + ℎ𝑠𝑦𝑛𝑐_𝑤𝑖𝑑𝑡ℎ
𝑡𝑜𝑡𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑣𝑖𝑑𝑒𝑜_ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑣𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + 𝑣𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ + 𝑣𝑠𝑦𝑛𝑐_𝑤𝑖𝑑𝑡ℎ
GMSL interface

List of all existing properties (available in status):

input_id - integer. Input number ID, zero based.

oldi_lane_width - string enum (single, dual). Number of deserializer output lanes.

color_mapping - string enum (oldi_jeida, spwg_vesa). Mapping of the incoming bits in the signal to the
colour bits of the pixels.

link_status - string enum (unlocked, locked). Video link status. If the link is locked, chips are properly
connected and communicating at the same speed and protocol. The link can be locked without an active
video stream.

stream_status - string enum (not_detected, detected). Video stream status. A stream is detected if the
link is locked, the input pixel clock is running and the DE signal is moving.

video_width - integer. Video stream width. This is the actual width as detected by the HW.

video_height - integer. Video stream height. This is the actual height as detected by the HW.

vsync_status - string enum (active_low, active_high, not_available). The type of VSYNC pulses as
detected by the video format detector.

hsync_status - string enum (active_low, active_high, not_available). The type of HSYNC pulses as
detected by the video format detector.

vsync_gap_length - integer. If the incoming video signal does not contain synchronization VSYNC and
HSYNC pulses, these must be generated internally in the FPGA to achieve the correct frame ordering.
This value indicates, how many empty pixels (pixels with deasserted Data Enable signal) are necessary
to generate the internal VSYNC pulse.

hsync_gap_length - integer. If the incoming video signal does not contain synchronization VSYNC
and HSYNC pulses, these must be generated internally in the FPGA to achieve the correct frame
ordering. This value indicates, how many empty pixels (pixels with deasserted Data Enable signal) are
necessary to generate the internal HSYNC pulse. The value must be greater than 1 and smaller than
vsync_gap_length.

pclk_frequency - integer. Input pixel clock frequency in kHz.

hsync_width - integer. Width of the HSYNC signal in PCLK pulses.

vsync_width - integer. Width of the VSYNC signal in video lines.

hback_porch - integer. Number of PCLK pulses between deassertion of the HSYNC signal and the first
valid pixel in the video line (marked by DE=1).

hfront_porch - integer. Number of PCLK pulses between the end of the last valid pixel in the video line
(marked by DE=1) and assertion of the HSYNC signal.

vback_porch - integer. Number of video lines between deassertion of the VSYNC signal and the video
line with the first valid pixel (marked by DE=1).

vfront_porch - integer. Number of video lines between the end of the last valid pixel line (marked by
DE=1) and assertion of the VSYNC signal.

frequency_range - string enum (pll_less_than_50mhz, pll_greater_or_equal_50mhz). PLL frequency
range of the OLDI input clock generator. The PLL frequency is derived from the Pixel Clock Frequency
(PCLK) and is equal to PCLK if oldi_lane_width is set to single and PCLK/2 if oldi_lane_width is set
to dual.

gmsl_mode - string enum (br_12000M, br_6000M, br_3000M, br_1500M). GMSL speed mode.

gmsl_stream_id - integer. The GMSL multi-stream contains up to four video streams. This parameter
selects which stream is captured by the video input. The value is the zero-based index of the stream.

31

gmsl_fec - string enum (disabled, enabled). GMSL Forward Error Correction (FEC).

List of configurable properties (may occur in configuration):

oldi_lane_width
color_mapping
vsync_gap_length
hsync_gap_length
frequency_range
gmsl_mode
gmsl_stream_id
gmsl_fec

The frame rate may be computed by the formula:

𝑓𝑟𝑎𝑚𝑒_𝑟𝑎𝑡𝑒 = 𝑝𝑐𝑙𝑘_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 1000/(𝑡𝑜𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ ∗ 𝑡𝑜𝑡𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡)
𝑡𝑜𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ = 𝑣𝑖𝑑𝑒𝑜_𝑤𝑖𝑑𝑡ℎ + ℎ𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + ℎ𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ + ℎ𝑠𝑦𝑛𝑐_𝑤𝑖𝑑𝑡ℎ
𝑡𝑜𝑡𝑎𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑣𝑖𝑑𝑒𝑜_ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑣𝑓𝑟𝑜𝑛𝑡_𝑝𝑜𝑟𝑐ℎ + 𝑣𝑏𝑎𝑐𝑘_𝑝𝑜𝑟𝑐ℎ + 𝑣𝑠𝑦𝑛𝑐_𝑤𝑖𝑑𝑡ℎ

3.9.1.2 Converter Converter is a component allowing to perform some hardware accelerated trans-
formations (resizing, cropping, rotating, flipping etc.). The configuration is located at JSON pointer
/video/captures/<name>/converter. There is no status available.

Snippet of converter configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/converter
)
{

"size": [
0,
0

],
"crop_src": [

0,
0,
0,
0

],
"crop_dst": [

0,
0,
0,
0

],
"flip": "none",
"filter": "none"

}

size - Destination frame size [width, height] (in pixels). Must be between [128, 128] and [4096, 4096]. Set
to [0, 0] to disable resizing. Any invalid values result in disabled resizing.

crop_src - Source frame cropping parameters [x, y, width, height] (in pixels). Must be between [128, 128]
and [4096, 4096]. Set to [0, 0, 0, 0] to disable cropping. Any invalid values result in disabled cropping.
When the cropping window exceeds the source frame size, cropping is also disabled.

crop_dst - Destination frame cropping parameters [x, y, width, height] (in pixels). Must be between
[128, 128] and [4096, 4096]. Set to [0, 0, 0, 0] to disable cropping. Any invalid values result in disabled
cropping. When the cropping window exceeds the destination frame size, cropping is also disabled.

flip - Flipping method (none, rotate_90, rotate_180, rotate_270, flip_x, flip_y, transpose, in-
verse_transpose).

filter - Filtering (smoothing) method (none, nearest, bilinear, tap_5, tap_10, smart, nicest).

32

3.9.1.3 Preview Preview is a component allowing to view the video stream on HDMI. The configu-
ration and status are located at JSON pointer /video/captures/<name>/preview.

Snippet of preview configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/preview)
{

"enabled": false,
"window": {

"position": [
0,
0

],
"size": [

0,
0

],
"border": {

"width": 0
},

}
}

Snippet of preview status (at JSON pointer /video/captures/fg4_001-003-001-018_i0/preview)
{

"running": false
}

To enable the preview, just set enabled property to true. See running property in status to get the real
state of the preview. If the running property is true, then the video frames are rendered to window,
whose properties are:

position - Coordinates [x, y] (in pixels) of the top-left corner of rendered window. They are ignored in
fullscreen.

size - Size [width, height] (in pixels) of rendered window. It must be greater or equal [128, 128]. Size [0,
0] is translated to fullscreen. Size [1, 1] is translated to the size of original frame. Other combinations
(whatever dimension less then 128) are reserved, but currently translated to fullscreen.

border/width - Width (in pixels) of window border.

When no external monitor is detected on HDMI, then preview will not be running, although it is enabled.

3.9.1.4 Video sink Video sink is problably the most typical way of processing the captured video
stream. In this sink the video stream is being encoded (H264, H265), muxed (MPEG-TS) and then

33

directly saved to storage or streamed over network. The configuration and status are located at JSON
pointer /video/captures/<name>/sinks/video.

Snippet of video sink configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/sinks/
video)
{

"enabled": true,
"encoder": {

"type": "h264",
"h264": {

"profile": "high",
"bitrate": 33000000,
"bitrate_peak": 0,
"idr_interval": 34,
"iframe_interval": 34

},
"h265": {

"profile": "main",
"bitrate": 33000000,
"bitrate_peak": 0,
"idr_interval": 34,
"iframe_interval": 34

}
},
"muxer": {

"type": "mpegts",
"mpegts": {

"allocated_capture_buffers": 64
}

},
"file_writer": {

"enabled": false,
"path": "mounts:/satadisk/video/captures/fg4_001 -003-001-018_i0/sinks/video/",
"enqueued_output_buffers": 64

},
"tcp_server": {

"port": 50180
},
"tcp_session": {

"enqueued_output_buffers": 32
}

}

Snippet of video sink status (at JSON pointer /video/captures/fg4_001-003-001-018_i0/sinks/video)
{

"running": true,
"file_writer": {

"running": false
}

}

To enable the sink, just set enabled property to true. See running property in status to get the real state
of the sink. If the running property is true, then at least encoder and muxer are running, also TCP
server should be running. When encoder or muxer are not able to run (for whatever reason), then also
the sink is not able to run and the running property is false. When TCP server is not able to run (for
whatever reason), then it has no impact on the sink and its running property remains unchanged. File
writer has its own enabled and running properties.

After the file writer gets running or the TCP client gets connected, they immediately receive frames
from already running stream (consisting of encoded and muxed frames). There exists no special file
container (mp4, mpv, …). There exists no additional filtering, e.g. skipping first no-key frames. This is

34

the pretty suitable solution for having low-latency and high-efficiency video stream for multiple recipients.
Any DVB-T/S stream works in the same way.

3.9.1.4.1 Encoder The configuration is located at JSON pointer /video/captures/<name>/sinks/
video/encoder. Status is not available. There are multiple types of encoder, so set the type property to
select the required one. The type may contain one of these values: h264, h265. The configuration of each
particular encoder is then contained in its own property of the same name.

H264

Encoder H264 (also known as AVC or MPEG-4 Part 10) has these configuration properties:

profile - Profile. It may contain one of these values: baseline, main and high.

bitrate - Bitrate (in bits per second), in range from 8192 (1 kiB/s) to 134217728 (16 MiB/s). It is only a
hint, so the real bitrate may vary. Typically, if the configured bitrate is too high to be fully utilized to
encode the low complexity frames, then the real bitrate will always be less than the configured one.

bitrate_peak - Peak bitrate (in bits per second), in range from 0 to 134217728 (16 MiB/s). If greater
than bitrate, then required real bitrate is considered as variable, otherwise it is considered as constant.
It is only a hint, so the real bitrate may occur outside the specified range.

idr_interval - Interval between two IDR-frames (in number of frames), in range from 1 to 1024.

iframe_interval - Interval between two I-frames (in number of frames), in range from 1 to 1024.

The encoder is hardware accelerated and always uses the YM12 (YUV 4:2:0 planar) pixel format, with
BT.601 limited range encoding. The frames are converted automatically.

H265

Encoder H265 (also known as HEVC or MPEG-H Part 2) has these configuration properties:

profile - Profile. It may contain one of these values: main.

bitrate - Bitrate (in bits per second), in range from 8192 (1 kiB/s) to 134217728 (16 MiB/s). It is only a
hint, so the real bitrate may vary. Typically, if the configured bitrate is too high to be fully utilized to
encode the low complexity frames, then the real bitrate will always be less than the configured one.

bitrate_peak - Peak bitrate (in bits per second), in range from 0 to 134217728 (16 MiB/s). If greater
than bitrate, then required real bitrate is considered as variable, otherwise it is considered as constant.
It is only a hint, so the real bitrate may occur outside the specified range.

idr_interval - Interval between two IDR-frames (in number of frames), in range from 1 to 1024.

iframe_interval - Interval between two I-frames (in number of frames), in range from 1 to 1024.

The encoder is hardware accelerated and always uses the YM12 (YUV 4:2:0 planar) pixel format, with
BT.601 limited range encoding. The frames are converted automatically.

3.9.1.4.2 Muxer The configuration is located at JSON pointer /video/captures/<name>/sinks/video
/muxer. Status is not available. There are multiple types of multiplexer, so set the type property to select
the required one. The type may contain one of these values: mpegts. The configuration of each particular
multiplexer is then contained in its own property of the same name. Currently only one multiplexer
(MPEG-TS) is supported.

MPEG-TS

Multiplexer MPEG-TS has these configuration properties:

allocated_capture_buffers - Number of allocated capture buffers, in range from 1 to 128. They are buffers
filled with muxed video and going out from the multiplexer. See Queuing buffers for detailed information.

35

3.9.1.4.3 File writer The configuration and status are located at JSON pointer /video/captures
/<name>/sinks/video/file_writer. File writer is responsible for storing the encoded/muxed stream to
mounted device (e.g. SATA or USB disk). Destination file is determined by path, which is a string
complying with definition of URI (Uniform Resource Identifier), see RFC3986. Only scheme and path
components are used within the URI.

Scheme component must always be set to mounts value. It means that one of the mounted devices will
be used for writing the file.

Path component represents the file path. It must always start with forward slash character “/”. The
first segment of the path must always be the name of specific mount point, in general it can be any
of mount points located in status at JSON pointer /storage/mounts. See Mounts chapter for detailed
description. The following segments represent the rest of the file path within the mount point. The path
may contain some special variables, which are replaced by their real values at the time the file is created.
These variables must be specified in form $(variable_name). Currently supported variables:

time - system time complying with full date and time according to ISO 8601, with milliseconds

ext - default file extension (including the dot “.”) corresponding with used data format

When the path ends with forward slash character “/”, it is considered as directory and the file name is
constructed automatically as $(time)$(ext). When the path contains non-existent directories, they will
be created automatically.

Here are examples of possible paths:
mounts:/satadisk/video/captures/fg4_001 -003-001-018_i0/sinks/video/

The file is created on storage device, that is mounted to mount point satadisk. Directories video, captures,
fg4_001-003-001-018_i0, sinks and video are created automatically if they don’t exist. Because the path
ends with “/”, it is considered as directory and the file name is constructed automatically. So the
resulting file name on the mounted device may look something like /video/captures/fg4_001-003-001-
018_i0/sinks/video/20240215T105231.517Z.ts.
mounts:/satadisk/captures/fg4_018_$(time)$(ext)

The file is created on storage device, that is mounted to mount point satadisk. Directory captures
is created automatically if it doesn’t exist. The resulting file name on the mounted device may look
something like /captures/fg4_018_20240215T105231.517Z.ts.

To enable the file writer, just set enabled to true. See running property in status to get the real state
of file writer. To have the running file writer, some conditions must be met. E.g. the whole capture
pipeline must be enabled, video sink must be enabled, file writer must be enabled, mount point must
exist, mounted device must be writable and must contain enough free space, file name must be correctly
specified, valid signal must be present on input of video capture device. When any of these conditions are
not met or any errors occur, the file writer stops working and the running state is set to false. Whenever
the file writer changes its running state to true, it creates new file and opens it for writing. When the
file writer changes its running state to false, it also closes the file.

The last property is enqueued_output_buffers. It is the maximum number of enqueued output buffers,
with minimum of 1. They are buffers coming directly from multiplexer. See Queuing buffers for detailed
information.

3.9.1.4.4 Streaming over network Encoded/muxed stream may also be transmitted over network
as TCP stream. Element tcp_server represents the TCP server, that listens on specified port. Each time
it accepts incoming connection, new TCP session is created. Multiple TCP sessions may exist at the
same time. Each created TCP session is configured with parameters found in tcp_session element. It
has only one single property enqueued_output_buffers. It is the maximum number of enqueued output
buffers, with minimum of 1. They are buffers coming directly from multiplexer. See Queuing buffers for
detailed information.

36

https://datatracker.ietf.org/doc/html/rfc3986

3.9.1.5 Image sink Video sink is a little special way of processing the captured video stream. In
this sink the video stream is being encoded (PNG) into sequence of separated images, and then directly
saved to storage (as separated files) or streamed over network (as sequence of images). The configuration
and status are located at JSON pointer /video/captures/<name>/sinks/image.

Snippet of image sink configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/sinks/
image)
{

"enabled": true,
"triggered_mode": false,
"encoder": {

"type": "png",
"png": {

"filter": "none",
"compression": 6,
"threads": 2,
"allocated_capture_buffers": 64

}
},
"file_writer": {

"enabled": false,
"path": "mounts:/satadisk/video/captures/fg4_001 -003-001-018_i0/sinks/image/",
"enqueued_output_buffers": 64,
"ring_buffer": {

"enabled": true,
"size": 100

}
},
"tcp_server": {

"port": 50184
},
"tcp_session": {

"enqueued_output_buffers": 32
}

}

Snippet of image sink status (at JSON pointer /video/captures/fg4_001-003-001-018_i0/sinks/image)
{

"running": true,
"file_writer": {

"running": false
}

}

To enable the sink, just set enabled property to true. See running property in status to get the real state
of the sink. If the running property is true, then at least encoder is running, also TCP server should be
running. When encoder is not able to run (for whatever reason), then also the sink is not able to run
and the running property is false. When TCP server is not able to run (for whatever reason), then it
has no impact on the sink and its running property remains unchanged. File writer has its own enabled
and running properties.

After the file writer gets running or the TCP client gets connected, they immediately receive frames
from already running stream (consisting of encoded frames - images).

Due to its nature the image sink may operate in so called “triggered” mode. To enable this mode, just
set triggered_mode property to true. In this mode the normal streaming of images is blocked and the
image is passed only when a dedicated nonparametric synchronous action at URL path

• /api/app/actions/video/captures/<name>/sinks/image/trigger_image

is called. Every call of this action is buffered. Then, when a frame is captured (by captured device) and
the buffer of actions is not empty, the frame is passed and the buffer of actions is cleaned. The buffer is
also cleaned whenever the image sink changes its state to running. Of course, the action can be used as

37

Trigger sink within the Trigger system. In this case all participating triggers are stored (if possible) as
metadata in the passed image. Actually, when the action is called directly by HTTP API (not as trigger
sink), the action is also stored, the same way as the trigger, but with empty trigger identifier. See the
particular encoder chapters how the triggers are stored in the image.

Although the captured video frames and generated triggers have their own timestamps, there exists no
their explicit timestamp-based synchronization when working in triggered mode. Typically, the triggers
are generated (and timestamped) in their own threads, the video frames are captured (and timestamped)
in their own threads and also the trigger-based video frame filter works in its own thread. The filter
processes the triggers and frames as they are comming, as fast as possible and without any specific
timestamp-based synchronization. So the time-based closeness depends primarily on CPU power. This
behaviour results from the fact, that the precision of assigning the timestamps to the triggers and video
frames also depends primarily on CPU power and within the current Linux system it can’t be solved in
a better way. So the timestamps difference between the passed video frame and its trigger is absolutely
as small as possible (dependent on CPU power), but it may have both positive and negative sign. See
the Examples how the timestamps may look like.

3.9.1.5.1 Encoder The configuration is located at JSON pointer /video/captures/<name>/sinks/
image/encoder. Status is not available. There are multiple types of encoder, so set the type property
to select the required one. The type may contain one of these values: png. The configuration of each
particular encoder is then contained in its own property of the same name. Currently only one encoder
(PNG) is supported.

PNG

Encoder PNG has these configuration properties:

filter - Filter type, may contain one of these values: none, sub, up, avg, paeth. The purpose of the filter
is to prepare the image data for optimum compression.

compression - Compression level, in range from 0 to 9. Zero level means no compression.

threads - Number of threads performing the compression, in range from 1 to 6.

allocated_capture_buffers - Number of allocated capture buffers, in range from 1 to 128. They are buffers
filled with encoded images and going out from encoder. See Queuing buffers for detailed information.

The encoder is lossless and always uses RGBA pixel format, with 32-bit per pixel. The frames are
converted automatically. The encoder is not hardware accelerated, but it provides the possibility to set
the number of threads performing the compression. Increasing the threads property increases the frame
rate, of course, the latency remains unchanged. Note that increasing the threads property causes more
consumed CPU power, so it may have significant impact on the rest of the system. Interesting possibility
to increase the frame rate, decrease latency and save CPU power is to decrease the compression property,
of course at the cost of increased bandwidth. Also the filter property has significant impact on CPU
power, e.g. setting to none totally disables the filtering, so it saves CPU power, of course, at the cost of
worse compression. Setting filter to none and compression to 0 results in streaming totally unencoded
(raw) image data, so it usually saves maximum CPU power but consumes maximum bandwidth.

PNG format allows to store additional textual metadata. This is used for storing the timestamp and
trigger, both in key-value tEXt chunks.

Timestamp is identified by the key ts, the value contains the timestamp, as integer number in nanoseconds.
See the Timestamps for detailed information.

Trigger is identified by the key tr, the value contains the trigger, as JSON object. See the Trigger for
detailed information. Multiple triggers are stored as multiple key-value chunks.

3.9.1.5.2 File writer The configuration and status are located at JSON pointer /video/captures/<
name>/sinks/image/file_writer. File writer is responsible for storing the encoded frames to mounted
device (e.g. SATA or USB disk). Each frame is stored to its own separate file. The file is determined
by path, which is a string complying with definition of URI (Uniform Resource Identifier), see RFC3986.
Only scheme and path components are used within the URI.

38

https://datatracker.ietf.org/doc/html/rfc3986

Scheme component must always be set to mounts value. It means that one of the mounted devices will
be used for writing the file.

Path component represents the file path. It must always start with forward slash character “/”. The
first segment of the path must always be the name of specific mount point, in general it can be any
of mount points located in status at JSON pointer /storage/mounts. See Mounts chapter for detailed
description. The following segments represent the rest of the file path within the mount point. The path
may contain some special variables, which are replaced by their real values at the time the file is created.
These variables must be specified in form $(variable_name). Currently supported variables:

time - system time complying with full date and time according to ISO 8601, with milliseconds

ext - default file extension (including the dot “.”) corresponding with used data format

When the path ends with forward slash character “/”, it is considered as directory and the file name is
constructed automatically as $(time)$(ext). When the path contains non-existent directories, they will
be created automatically.

Here are examples of possible paths:
mounts:/satadisk/video/captures/fg4_001 -003-001-018_i0/sinks/image/

The file is created on storage device, that is mounted to mount point satadisk. Directories video, captures,
fg4_001-003-001-018_i0, sinks and image are created automatically if they don’t exist. Because the
path ends with “/”, it is considered as directory and the file name is constructed automatically. So the
resulting file name on the mounted device may look something like /video/captures/fg4_001-003-001-
018_i0/sinks/image/20240215T105231.517Z.png.
mounts:/satadisk/captures/fg4_018_$(time)$(ext)

The file is created on storage device, that is mounted to mount point satadisk. Directory captures
is created automatically if it doesn’t exist. The resulting file name on the mounted device may look
something like /captures/fg4_018_20240215T105231.517Z.png.

To enable the file writer, just set enabled to true. See running property in status to get the real state
of file writer. To have the running file writer, some conditions must be met. E.g. the whole capture
pipeline must be enabled, image sink must be enabled, file writer must be enabled, mount point must
exist, mounted device must be writable and must contain enough free space, file name must be correctly
specified, valid signal must be present on input of video capture device. When any of these conditions
are not met or any errors occur, the file writer stops working and the running state is set to false.

Because each frame is stored to its own separate file, the number of created files may grow very quickly and
the filesystem may get overloaded very easily. Therefore the file writer is equipped with ring buffer, that
allows to keep only specified number of latest files. The buffer remembers created files (full paths) and
when their number exceeds specified size, the oldest ones are deleted. When ring buffer is disabled, whole
remembered history of created files is lost, but created files still remain on storage. The configuration
is contained in property ring_buffer. The property enabled enables/disables ring buffer (by default it is
always enabled), the property size determines the size of ring buffer, it means the number of latest files
being kept on storage.

The last property is enqueued_output_buffers. It is the maximum number of enqueued output buffers,
with minimum of 1. They are buffers coming directly from encoder. See Queuing buffers for detailed
information.

3.9.1.5.3 Streaming over network Encoded frames may also be transmitted over network as TCP
stream. Element tcp_server represents the TCP server, that listens on specified port. Each time it
accepts incoming connection, new TCP session is created. Multiple TCP sessions may exist at the same
time. Each created TCP session is configured with parameters found in tcp_session element. It has only
one single property enqueued_output_buffers. It is the maximum number of enqueued output buffers,
with minimum of 1. They are buffers coming directly from encoder. See Queuing buffers for detailed
information.

39

3.9.1.6 Statistics When the video pipeline is running, some useful statistics are being computed.
The configuration is located at JSON pointer /video/captures/<name>/stats. Status is not available.

Snippet of statistics configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/stats)
{

"osd": {
"enabled": true,
"position": [

16,
16

],
"size": 10

}
}

The statistics are quite rough numbers, rather intended for quick insight or debug purposses. They may
be rendered into the running video stream as OSD window. Currently this is the only way how to view
them. The configuration properties are:

osd/enabled - If true, then OSD window is enabled.

osd/position - Coordinates [x, y] (in pixels) of the top-left corner of rendered OSD window.

osd/size - Font size.

The example of statistics OSD window:

Each line begins with shortened name of the video pipeline component followed by its statistics. Possible
components:

capt - Capture device. Always present.
conv - Converter. Always present.
venc - Video sink encoder. Present only if video sink is enabled.
ienc - Image sink encoder. Present only if image sink is enabled.
vfwr - Video sink file writer. Present only if video sink file writer is enabled.
ifwr - File sink file writer. Present only if image sink file writer is enabled.
vtcp <ip>:<port> - Video sink TCP session. IP address and port identify the connected client. Present
only if the client is connected.
itcp <ip>:<port> - Image sink TCP session. IP address and port identify the connected client. Present
only if the client is connected.

The following statistics are:

size - Size (width x height) of the video frame.

rate - The first number indicates the frame rate (in frames per second, fps). The second number indicates
the bitrate (in mebibytes per second, MiB/s). Both numbers are shown as integers (truncated floats).

delay - Delay (in milliseconds) of the frame at time of leaving the corresponding component. It is
measured relatively to the time at which the frame was received by driver of the underlying linux video
device. As shown in the OSD window example, it took 23 milliseconds from capturing the frame till
passing it into the video sink TCP socket.

pass - Number of frames, that were passed through the corresponding component. It is counted from
the time at which the component was created/enabled.

40

drop - Number of frames, that couldn’t be passed through the corresponding component (e.g. it was
busy) and thus were dropped. It is counted from the time at which the component was created/enabled.
It is very typical for PNG image sink encoder (ienc) to have many dropped frames, because it is not
hardware accelerated. In case of slow network or TCP client the number of dropped frames may grow by
TCP session (vtcp, itcp). In case of slow storage device the number of dropped frames may grow by file
writer (vfwr, ifwr). To get the number of frames dropped alongside multiple pipeline components, just
sum the dropped frames from all participating components. E.g. to get the total number of dropped
frames on the path the between capture device and video sink TCP client, sum dropped frames from
capt, venc and vtcp. Converter and muxer never drop the frames, because they are tigthly coupled with
preceding component. E.g. if converter is too slow, then number of dropped frames by capture device is
growing, if muxer is too slow, then number of dropped frames by encoder is growing.

3.9.1.7 Trigger mark Trigger mark configuration is located at JSON pointer /video/captures/<name
>/trigger_mark. Status is not available.

Snippet of trigger mark configuration (at JSON pointer /video/captures/fg4_001-003-001-018_i0/
trigger_mark)
{

"position": [
0,
0

],
"size": 10

}

Trigger mark is a custom text rendered into the running video stream for a specified time. The configu-
ration properties are:

position - Coordinates [x, y] (in pixels) of the top-left corner of the first (oldest) rendered trigger mark.
When multiple trigger marks have to be rendered at the same time, they are serialized by their creation
time into one single column, with the oldest one at the top and with the latest one at the bottom.

size - Font size.

To create a trigger mark, just call this parametric synchronous action at URL path

• /api/app/actions/video/captures/<name>/trigger_mark

with parameter being a JSON object like this:
{

"text" : "My custom trigger mark",
"timeout" : 1000

}

text - Text to be rendered as trigger mark.

timeout - Duration (in milliseconds) for which the trigger mark is being rendered.

Although the trigger mark has the word trigger in its name (for historical reasons), actually it has nothing
much to do with Trigger system. Except one simple fact, creating trigger mark is done by calling the
action, so it can be used as Trigger sink.

3.9.1.8 Timestamps Each frame going from Capture device contains the timestamp. In case of
FG4 capture device the timestamp is assigned in linux driver, immediately after the frame is received
from PCIe bus. Monotonic time is used as time base. The way how the timestamp is attached to the
frame depends on actually used format. E.g. frame muxed in MPEG-TS contains the timestamp in PTS
(presentation timestamp) field, frame encoded in PNG contains the timestamp in tEXt chunk.

41

3.9.1.9 Queueing buffers This chapter describes a little bit internal topic, but it should help to
understand some special parameters occurring by some video pipeline components. The chapter explains
how the data are transferred between the video pipeline components.

Each pipeline component capable of consuming data has at least one special queue, called output queue,
that is designated to receive data from the previous component. Each pipeline component capable of
producing data has at least one special queue, called capture queue, that is designated to transmit data
to the next component. The naming of the queues may seem confusing, but it is not when you realize,
that they are named from the outer point (rest of the pipeline), not from the inner point (the affected
pipeline component). This naming convention just mirrors the convention used by video subsystem used
by Linux (Video4Linux aka. V4L).

Each pair of neighbouring queues (capture queue of the producing component and output queue of the
consuming component) has a fixed number of allocated buffers, that continuously transfer the video data
of specific format from the producing component (producer) to the consuming component (consumer).
Usually one buffer contains one frame. At the beginning, when the pipeline is initialized, all buffers
are enqueued in capture queue of the producer. The producer starts to fill the enqueued buffers (writes
data) and once the buffers are filled they are dequeued from the capture queue. Then the filled buffers
are enqueued to output queue of the consumer. The consumer starts to consume the enqueued buffers
(reads data) and once the buffers are consumed they are dequeued from the output queue. Then the
consumed buffers are enqueud to capture buffer of the producer and the process repeats.

There may exist multiple consumers connected to one producer. In this case the filled buffers are enqueued
to all connected producers at the same time (the buffers are just pointers). After and only after the
buffers are dequeued from all consumers, they are again enqueued back to the producer. Although
this kind of zero-copy implementation is very effective, it has a potential drawback. When one of the
consumer is not able to consume the enqueued buffers at sufficient speed, then remaining consumers are
affected as well. In the worst case the slow consumer may exhaust all allocated buffers (they are kept in
its output queue) and so there is no free buffer, that can be used to transfer data between the producer
and the remaining consumers. To prevent this situation, some components contain the configurable limit
for number of simultaneously enqueued buffers in their output queues. This limit can be set by property
enqueued_output_buffers and currently it is present in video sink file writer, video sink TCP session,
image sink file writer and image sink TCP session components. The number of all allocated buffers can
be set by property allocated_capture_buffers and currently it is present in video sink muxer MPEG-TS
and image sink encoder PNG.

When the buffer can’t be enqueued to the output queue of the consumer (e.g. due to limit of simultane-
ously enqueued buffers), it is considered as dropped and when no other consumer exists, it is enqueued
back to the producer’s capture queue. Number of dropped buffers/frames may be observed in Statis-
tics. On the other hand, when all allocated buffers are enqueued in the output queue of the consumer
(e.g. there exists no limit of simultaneously enqueued buffers and the consumer is too slow), then the
lack of free buffers is transferred to the previous component. Its capture queue is empty, so it is not able
to consume buffers in its output queue and the situation repeats.

3.9.1.10 Examples Check if video pipeline (at its top level) is running.

42

curl -v -X GET 'http://192.168.1.200/api/app/status/video/captures/fg4_001
-003-001-018_i0/running'

Enable video pipeline (at its top level).
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/video/captures/fg4_001 -003-001-018_i0/enabled'

Enable video pipeline, preview, video sink and video sink file writer with one command.
curl -v -X PATCH -H 'Content-Type: application/json' -d '{"enabled":true,"preview

":{"enabled":true},"sinks":{"video":{"enabled":true,"file_writer":{"enabled":
true}}}}' 'http://192.168.1.200/api/app/config/video/captures/fg4_001
-003-001-018_i0'

Get properties of FPDL3 interface of FG4 card.
curl -v -X GET 'http://192.168.1.200/api/app/status/video/captures/fg4_001

-003-001-018_i0/capture/fg4/interface/fpdl3'

Get format of video signal, that is (or ‘will be’ if currently not enabled) sourced into the video pipeline
by FG4 capture device. Note, that JSON element format exists only when valid video signal is present
on input of FG4 capture device. If there is no valid video signal, then the JSON element doesn’t exist
and the server doesn’t respond with 200 (ok).
curl -v -X GET 'http://192.168.1.200/api/app/status/video/captures/fg4_001

-003-001-018_i0/capture/fg4/format'

Create trigger mark
curl -v -X POST -H 'Content-Type: application/json' -d '{"text":"My custom trigger

mark","timeout":1000}' 'http://192.168.1.200/api/app/actions/video/captures/
fg4_001 -003-001-018_i0/trigger_mark '

Trigger image (image sink must be in triggered mode)
curl -v -X POST 'http://192.168.1.200/api/app/actions/video/captures/fg4_001

-003-001-018_i0/sinks/image/trigger_image '

Print tEXt chunks contained in PNG file
pngcheck -t -q image.png

Possible output of command pngcheck -t -q image.png. Key ts contains image timestamp. Key tr
contains trigger, that created the image. It is obvious (because of existing tr key), that the image was
created in triggered mode by action /video/captures/<name>/sinks/image/trigger_image. In this case
the action was called as trigger sink, whose trigger source was the expiration of timer t0. Timestamps
difference is -1.9ms.
File: image.png (72237 bytes)
ts:

514842528000
tr:

{"id":"/timer/devices/t0/shot","ts":514844439596}

Possible output of command pngcheck -t -q image.png. Key ts contains image timestamp. Key tr
contains trigger, that created the image. It is obvious (because of existing tr key), that the image was
created in triggered mode by action /video/captures/<name>/sinks/image/trigger_image. In this case
the action was called as trigger sink, whose trigger source was the call of parametric synchronous action
at URL path /api/app/actions/trigger/send with parameter tr0. Timestamps difference is -2.8ms.
File: image.png (72909 bytes)
ts:

423846699000
tr:

{"id":"/control/tcp_session/tr0","ts":423849467195}

43

Possible output of command pngcheck -t -q image.png. Key ts contains image timestamp. Key tr
contains trigger, that created the image. It is obvious (because of existing tr key), that the image
was created in triggered mode by action /video/captures/<name>/sinks/image/trigger_image. In this
case (because of empty id) the nonparametric synchronous action at URL path /api/app/actions/video/
captures/<name>/sinks/image/trigger_image was called via HTTP API. Timestamps difference is 10.8ms.
File: image.png (75873 bytes)
ts:

193064627000
tr:

{"id":"","ts":193053840419}

Possible output of command pngcheck -t -q image.png. Key ts contains image timestamp. It is obvious
(because of missing tr key), that the image was created in normal (non-triggered) mode.
File: image.png (261858 bytes)
ts:

65092348053000

3.9.2 Video outputs

Next picture shows the component diagram of complete video output pipeline, with arrows indicating
the flow of video frames. Red labels are the names of corresponding objects in configuration and status
JSONs, their simplified snippets are shown below the diagram.

Snippet of video output pipeline configuration (at JSON pointer /video/outputs/fg4_001-003-001-018
_o0)
{

"enabled": true,
"source": {

"type": "test_pattern",
"test_pattern": {...},
"image_file": {...},
"video_file": {...}

},
"preview": {...},
"output": {

"fg4": {...}
},
"stats": {

44

"osd": {...}
}

}

Snippet of video output pipeline status (at JSON pointer /video/outputs/fg4_001-003-001-018_o0)
{

"running": true,
"preview": {...},
"output": {

"fg4": {...}
}

}

To enable the video output pipeline, just set enabled to true. See running property in status to get the
real state of video output pipeline. If the running property is true, then at least the source component
is running (i.e. video frames are captured from the selected source). Preview and output device have
their own separate enable property. To have the running video output pipeline, some conditions must be
met. Primarily the video output pipeline must be enabled and the selected video source must be ready
to provide the video stream (i.e. in case of image/video file source, there must exist a valid image/video
file on storage).

In contrast to the video capture pipeline, in video output pipeline the associated physical device acts as
video stream consumer, so it is not required to be ready to consume the video stream in order to have
the running pipeline.

The following links help to navigate to particular pipeline components.

• Source
– Test pattern
– Image file
– Video file

• Preview
• Output device
• Statistics
• Examples

3.9.2.1 Source The source component acts as essential source of video frames for the whole video
output pipeline. The configuration is located at JSON pointer /video/outputs/<name>/source. Status is
not available.

Snippet of video source configuration (at JSON pointer /video/outputs/fg4_001-003-001-018_o0/source)
{

"type": "test_pattern",
"test_pattern": {

"pattern": "colorbars_v_100",
"format": {

"rate": [
60,
1

],
"size": [

1920,
1080

]
}

},
"image_file": {

"path": "mounts:/satadisk/image.png",
"format": {

"rate": [
60,

45

1
]

}
},
"video_file": {

"path": "mounts:/satadisk/video.ts"
}

}

There are multiple types of video source, so set the type property to select the required one. The type may
contain one of these values: test_pattern, image_file, video_file. The configuration of each particular
type is then contained in its own property of the same name.

3.9.2.1.1 Test pattern Test pattern source generates the stream by repeating the predefined pattern.
The configuration is located at JSON pointer /video/outputs/<name>/source/test_pattern. It contains
these properties:

pattern - Test pattern. It must contain one of these values:

• solid_black
• solid_white_100
• solid_red_100
• solid_green_100
• solid_blue_100
• colorbars_v_75
• colorbars_v_100
• colorbars_h_75
• colorbars_h_100
• colorsquares_75
• colorsquares_100
• clock_analog_white_100
• clock_analog_red_100
• clock_analog_green_100
• clock_analog_blue_100

The generated patterns (frames) are natively represented in RGB, each color component in
range from 0x00 (0) to 0xFF (255). The postfix 100 implies the color components of value
0xFF (100), the postfix 75 implies the color components of value 0xBF (191).

format/rate - Frame rate represented as rational number [num, den], in frames per second.

format/size - Frame size [width, height], in pixels.

3.9.2.1.2 Image file Image file source generates the stream by repeating the image loaded from
specified file. It is expected, that the file contains one single image, encoded in any supported format
(PNG, JPG, …). The configuration is located at JSON pointer /video/outputs/<name>/source/image_file.
It contains these properties:

path - Location of the image file. It is a string complying with definition of URI (Uniform Resource
Identifier), see RFC3986. Two URI schemes are supported, mounts and tcp.

When the URI component scheme is mounts, then one of the mounted devices is used for
loading the file. In this case URI component path is used. It must always start with forward
slash character “/”. The first segment of the path must always be the name of specific mount
point, in general it can be any of mount points located in status at JSON pointer /storage
/mounts. See Mounts chapter for detailed description. The following segments represent the
rest of the file path within the mount point. E.g. when the path is mounts:/satadisk/images/
image.png, then the image is loaded from path /images/image.png located on storage mounted
to mount point satadisk.

46

https://datatracker.ietf.org/doc/html/rfc3986

When the URI component scheme is tcp, then the TCP socket is used for loading the
file. In this case URI components host and port are used. E.g. when the path is
tcp://192.168.1.1:8888, then the image is loaded from TCP server listening on address
192.168.1.1 and port 8888. Note, that more than one connection may be required before
the image file source begins to feed the stream into the video pipeline. Typically the first
connection loads the image only to determine its parameters (required for creating pipeline)
and the second connection loads the image for immediate streaming (within the already
created pipeline).

format/rate - Frame rate represented as rational number [num, den], in frames per second.

3.9.2.1.3 Video file Video file source provides the stream loaded from specified file. It is expected,
that the file contains at least one video stream, encoded/muxed in any supported container (TS, MP4,
MKV, AVI, …). The first found stream is always used. The configuration is located at JSON pointer
/video/outputs/<name>/source/video_file. It contains these properties:

path - Location of the video file. It is a string complying with definition of URI (Uniform Resource
Identifier), see RFC3986. Two URI schemes are supported, mounts and tcp.

When the URI component scheme is mounts, then one of the mounted devices is used for
loading the file. In this case URI component path is used. It must always start with forward
slash character “/”. The first segment of the path must always be the name of specific mount
point, in general it can be any of mount points located in status at JSON pointer /storage
/mounts. See Mounts chapter for detailed description. The following segments represent the
rest of the file path within the mount point. E.g. when the path is mounts:/satadisk/videos/
video.ts, then the stream is loaded from path /videos/video.ts located on storage mounted
to mount point satadisk.

When the URI component scheme is tcp, then the TCP socket is used for loading the
file. In this case URI components host and port are used. E.g. when the path is tcp
://192.168.1.1:8888, then the stream is loaded from TCP server listening on address
192.168.1.1 and port 8888. Note, that more than one connection may be required before
the video file source begins to feed the stream into the video pipeline. Typically the first
connection loads a few frames only to determine their parameters (required for creating
pipeline) and the second connection begins to continuously load the whole stream for
immediate streaming (within the already created pipeline).

NOTE:
Currently no hardware accelerated decoding is possible.

3.9.2.2 Preview Preview is a component allowing to view the video stream on HDMI. The configu-
ration and status are located at JSON pointer /video/outputs/<name>/preview.

Snippet of preview configuration (at JSON pointer /video/outputs/fg4_001-003-001-018_o0/preview)
{

"enabled": false,
"window": {

"position": [
0,
0

],
"size": [

0,
0

],
"border": {

"width": 0
},

}
}

47

https://datatracker.ietf.org/doc/html/rfc3986

Snippet of preview status (at JSON pointer /video/outputs/fg4_001-003-001-018_o0/preview)
{

"running": false
}

To enable the preview, just set enabled property to true. See running property in status to get the real
state of the preview. If the running property is true, then the video frames are rendered to window,
whose properties are:

position - Coordinates [x, y] (in pixels) of the top-left corner of rendered window. They are ignored in
fullscreen.

size - Size [width, height] (in pixels) of rendered window. It must be greater or equal [128, 128]. Size [0,
0] is translated to fullscreen. Size [1, 1] is translated to the size of original frame. Other combinations
(whatever dimension less then 128) are reserved, but currently translated to fullscreen.

border/width - Width (in pixels) of window border.

When no external monitor is detected on HDMI, then preview will not be running, although it is enabled.

3.9.2.3 Output device Currently only one type of physical output device is supported, namely FG4.
So this chapter covers only working with FG4. The configuration and status are located at JSON pointer
/video/outputs/<name>/output/fg4.

NOTE:
Firmware version 1.0 doesn’t support GMSL outputs. Although they may be present both in status and
configuration, they do not actually work.

Snippet of video output device configuration (at JSON pointer /video/outputs/fg4_001-003-001-018_o0
/output/fg4)
{

"enabled": true,
"format": {
},
"interface": {

"fpdl3": {
"display_height": 1080,
"display_width": 1920,
"fpdl3_output_width": "dual",
"frame_rate": 200,
"pclk_frequency": 150000,
"video_source": "v4l2_output_0"

},
"gmsl": {

"display_height": 1080,
"display_width": 1920,
"frame_rate": 200,
"pclk_frequency": 150000

}
}

}

Snippet of video output device status (at JSON pointer /video/outputs/fg4_001-003-001-018_o0/output
/fg4)
{

"running": true,
"format": {

"fourcc": "AR24",
"rate": [

150000000,
2391660

],

48

"size": [
1920,
1080

]
},
"format_descriptions": [

{
"fourcc": "AR24",
"rates": [

[
150000000,
2391660,
125000000,
4294967295,
125000000,
1

]
],
"size": [

1920,
1080

]
},
{

"fourcc": "YUYV",
"rates": [

[
150000000,
2391660,
125000000,
4294967295,
125000000,
1

]
],
"size": [

1920,
1080

]
}

],
"interface": {

"fpdl3": {
"de_polarity": "active_high",
"display_height": 1080,
"display_width": 1920,
"fpdl3_output_width": "dual",
"frame_rate": 200,
"hback_porch": 50,
"hfront_porch": 50,
"hsync_polarity": "active_low",
"hsync_width": 40,
"output_id": 0,
"pclk_frequency": 150000,
"vback_porch": 31,
"vfront_porch": 30,
"video_source": "v4l2_output_0",
"vsync_polarity": "active_low",
"vsync_width": 20

}
},
"parent_device": "001-003-001-018"

}

49

This type of video output is a part of FG4 card (actually it represents an output of the interface module),
so there exists a reference to this card, property parent_device. It contains the name of parent FG4 card,
whose properties can be found at JSON pointer /fg4/devices/<name>. See FG4 PCIe cards chapter to
get detailed information.

To enable the output device, just set the enabled property to true. See running property in status to
get the real state of output device. If the running property is true, then the video frames are consumed
from the pipeline and should occur at the corresponding output of FG4 card’s interface.

3.9.2.3.1 Format In general an output device acts as consumer of video frames from video output
pipeline. Only when the element format is present in status, the output device is ready to consume the
video stream. The format describes the stream, that must be provided to the output device. When the
device is running, then format describes the actually flowing stream. When the device is not running,
then format describes the stream, that will be flowing when the device is enabled (and consequently
running) and no custom format is specified. The format has these properties:

fourcc - Pixel format represented as FourCC.

size - Frame size [width, height], in pixels.

rate - Frame rate represented as rational number [num, den], in frames per second.

It is allowed to specify a custom format. If the element format is present in configuration, the output
device tries to consume the stream in specified format. If the specified format cannot be used, then some
other is used. Again, when device is running, check format in status to get the actually used format. In
configuration the element format is optional and also its all three sub-elements fourcc, size and rate are
optional. Currently only fourcc and rate are evaluated, size is ignored. Possible format values can be
determined from status element format_descriptions. It is actually an array of allowed formats, where
each element has these properties:

fourcc - Pixel format represented as FourCC.

size - Frame size, in pixels. It is represented as [width, height] in case of discrete size, or as [min_width,
min_height, max_width, max_height, step_width, step_heigth] in case of step-wise size.

rates - Array of frame rates, in frames per second. Each one is represented as [num, den] in case of discrete
rate, or as [max_num, max_den, min_num, min_den, step_num, step_den] in case of step-wise rate.
In calculations step must be used as period (not frame rate), with flipped numerator and denominator,
e.g. 𝑐𝑢𝑠𝑡𝑜𝑚_𝑟𝑎𝑡𝑒 = 1/(𝑚𝑖𝑛_𝑑𝑒𝑛/𝑚𝑖𝑛_𝑛𝑢𝑚 + 10 ∗ 𝑠𝑡𝑒𝑝_𝑑𝑒𝑛/𝑠𝑡𝑒𝑝_𝑛𝑢𝑚).

Element fourcc may contain only AR24 or YUYV. Pixel format AR24 is ABGR with four bytes per
pixel, pixel format YUYV is YUV 4:2:2 with four bytes per two pixels. So the YUYV takes only
half the bandwidth compared to AR24. On the other hand it may loose some information, because
e.g. FPDL3/GMLS interfaces use the RGB with three bytes per pixel. Omit the fourcc to use the default
AR24.

Element rate may be used to set a custom fixed frame rate, which must always be less than the one being
configured on interface. It may be useful to reduce the bandwith. Omit the rate to use the value from
interface configuration.

Element size is ignored as it is always used the value from interface configuration.

Possible format and format_descriptions values are always derived from interface configuration. So
set the interface configuration properly to have the required format on interface output. On the contrary,
the setting of format property to custom value is not necessary in most cases. It may be effectively used
only for affecting the bandwith on PCIe.

It doesn’t matter, which format is used by the video source. It is always transformed to the format
required by the output device. Of course, when the video source has the same resolution and RGB pixel
format with three bytes per pixel (used by FPDL3/GMSL interfaces), then no image information is lost.
As for the frame rates, when they don’t match exactly, the frames are dropped or duplicated to maintain
the rate in interface configuration.

50

https://fourcc.org
https://fourcc.org

NOTE:
Firmware version 1.0 doesn’t support specifying custom format. It always uses the AR24 pixel format
and the frame size and frame rate from interface configuration.

3.9.2.3.2 Interface Each FG4 card may contain an interchangable part named as interface module
(or just interface). Each interface may contain one or more video outputs. Each video output is repre-
sented by this output device. Check the status interface element to get the actually used interface type
(it contains exactly one sub-element, fpdl3 or gmsl). Each interface contains a number of properties,
whose actual values are available in status. Some of them can be set to custom value, just put the prop-
erty into configuration. To use the default (or last set) value, just omit the property from configuration.
Currently FPDL3 and GMSL interfaces are supported.

FPDL3

List of all existing properties (available in status):

output_id - integer. Output number ID, zero based.

video_source - string enum (input_0, input_1, v4l2_output_0, v4l2_output_1). Output video source.
If set to input_0 or input_1, the source is the corresponding hardware input (of interface module) and
the pipeline output device (/output/fg4, here also called as v4l2 device) is internally disabled (can’t
be in running state). In this mode the stream flows from the specified hardware input to the output
in a direct way (kind of hardware loopback), the pipeline is not used as the source and so it may be
disabled completely (or at least the pipeline output device should be disabled, /output/fg4/enabled set
to false). If set to v4l2_output_0 or v4l2_output_1, the source is the corresponding pipeline output
device (/output/fg4, here also called as v4l2 device). In this mode both the corresponding pipeline and
its output device should be enabled to have a video stream at the output.

Let’s have FG4 card (/fg4/devices/001-003-001-018) equipped with FPDL3 interface
module containing two inputs (/video/captures/fg4_001-003-001-018_i0, /video/captures
/fg4_001-003-001-018_i1) and two outputs (/video/outputs/fg4_001-003-001-018_o0,
/video/outputs/fg4_001-003-001-018_o1). Now let’s talk about output /video/outputs/
fg4_001-003-001-018_o0 and its video source /video/outputs/fg4_001-003-001-018_o0/output
/fg4/interface/fpdl3/video_source.

• When the source is set to v4l2_output_0, then the output pipeline device /video/outputs
/fg4_001-003-001-018_o0/output/fg4 is used as the video source (normal mode).

• When the source is set to v4l2_output_1, then the output pipeline device /video/outputs
/fg4_001-003-001-018_o1/output/fg4 is used as the video source (cross pipeline mode).

• When the source is set to input_0, then the hardware input of /video/captures/fg4_001
-003-001-018_i0/capture/fg4 is used as the video source (hardware loopback mode).

• When the source is set to input_1, then the hardware input of /video/captures/fg4_001
-003-001-018_i1/capture/fg4 is used as the video source (hardware loopback mode).

The number X from enum input_X, input_X, v4l2_output_X, v4l2_output_X must be
matched with the number contained in corresponding interface property (/output/fg4
/interface/fpdl3/output_id or /capture/fg4/interface/fpdl3/input_id), not with the
number contained in device name (/video/captures/fg4_001-003-001-018_iX or /video/
captures/fg4_001-003-001-018_oX).

display_width - integer. Display width. There is no autodetection of the connected display, so the
propper value must be set before the start of streaming.

display_height - integer. Display height. There is no autodetection of the connected display, so the
propper value must be set before the start of streaming.

frame_rate - integer. Output video signal frame rate limit (in frames per second). Due to the limited
output pixel clock steps, the card can not always generate a frame rate perfectly matching the value
required by the connected display. Using this parameter one can limit the frame rate by crippling the
signal so that the lines are not equal but the signal appears like having the exact frame rate to the
connected display.

51

hsync_polarity - string enum (active_low, active_high). HSYNC signal polarity.

vsync_polarity - string enum (active_low, active_high). VSYNC signal polarity.

de_polarity - string enum (active_low, active_high). DE signal polarity.

pclk_frequency - integer. Output pixel clock frequency (in kHz). Allowed values are between 25000-
190000 and there is a non-linear stepping between two consecutive allowed frequencies. The nearest
allowed frequency to the given value is found and set.

hsync_width - integer. Width of the HSYNC signal in PCLK pulses.

vsync_width - integer. Width of the VSYNC signal in video lines.

hback_porch - integer. Number of PCLK pulses between deassertion of the HSYNC signal and the first
valid pixel in the video line (marked by DE=1).

hfront_porch - integer. Number of PCLK pulses between the end of the last valid pixel in the video line
(marked by DE=1) and assertion of the HSYNC signal.

vback_porch - integer. Number of video lines between deassertion of the VSYNC signal and the video
line with the first valid pixel (marked by DE=1).

vfront_porch - integer. Number of video lines between the end of the last valid pixel line (marked by
DE=1) and assertion of the VSYNC signal.

fpdl3_output_width - string enum (automatic, single, dual). Number of serializer output lines.

List of configurable properties (may occur in configuration):

video_source
display_width
display_height
frame_rate
hsync_polarity
vsync_polarity
de_polarity
pclk_frequency
hsync_width
vsync_width
hback_porch
hfront_porch
vback_porch
vfront_porch
fpdl3_output_width

GMSL

List of all existing properties (available in status):

_output_id - integer. Output number ID, zero based.

video_source - string enum (input_0, input_1, v4l2_output_0, v4l2_output_1). Output video source.
If set to input_0 or input_1, the source is the corresponding hardware input (of interface module) and
the pipeline output device (/output/fg4, here also called as v4l2 device) is internally disabled (can’t
be in running state). In this mode the stream flows from the specified hardware input to the output
in a direct way (kind of hardware loopback), the pipeline is not used as the source and so it may be
disabled completely (or at least the pipeline output device should be disabled, /output/fg4/enabled set
to false). If set to v4l2_output_0 or v4l2_output_1, the source is the corresponding pipeline output
device (/output/fg4, here also called as v4l2 device). In this mode both the corresponding pipeline and
its output device should be enabled to have a video stream at the output. See description of FPDL3
video_source to get the example of how it’s working.

display_width - integer. Display width. There is no autodetection of the connected display, so the
propper value must be set before the start of streaming.

52

display_height - integer. Display height. There is no autodetection of the connected display, so the
propper value must be set before the start of streaming.

frame_rate - integer. Output video signal frame rate limit (in frames per second). Due to the limited
output pixel clock steps, the card can not always generate a frame rate perfectly matching the value
required by the connected display. Using this parameter one can limit the frame rate by crippling the
signal so that the lines are not equal but the signal appears like having the exact frame rate to the
connected display.

hsync_polarity - string enum (active_low, active_high). HSYNC signal polarity.

vsync_polarity - string enum (active_low, active_high). VSYNC signal polarity.

de_polarity - string enum (active_low, active_high). DE signal polarity.

pclk_frequency - integer. Output pixel clock frequency (in kHz). Allowed values are between 25000-
190000 and there is a non-linear stepping between two consecutive allowed frequencies. The nearest
allowed frequency to the given value is found and set.

hsync_width - integer. Width of the HSYNC signal in PCLK pulses.

vsync_width - integer. Width of the VSYNC signal in video lines.

hback_porch - integer. Number of PCLK pulses between deassertion of the HSYNC signal and the first
valid pixel in the video line (marked by DE=1).

hfront_porch - integer. Number of PCLK pulses between the end of the last valid pixel in the video line
(marked by DE=1) and assertion of the HSYNC signal.

vback_porch - integer. Number of video lines between deassertion of the VSYNC signal and the video
line with the first valid pixel (marked by DE=1).

vfront_porch - integer. Number of video lines between the end of the last valid pixel line (marked by
DE=1) and assertion of the VSYNC signal.

List of configurable properties (may occur in configuration):

video_source
display_width
display_height
frame_rate
hsync_polarity
vsync_polarity
de_polarity
pclk_frequency
hsync_width
vsync_width
hback_porch
hfront_porch
vback_porch
vfront_porch

3.9.2.4 Statistics When the video pipeline is running, some useful statistics are being computed.
The configuration is located at JSON pointer /video/outputs/<name>/stats. Status is not available.

Snippet of statistics configuration (at JSON pointer /video/outputs/fg4_001-003-001-018_o0/stats)
{

"osd": {
"enabled": true,
"position": [

16,
16

],
"size": 10

}

53

}

The statistics are quite rough numbers, rather intended for quick insight or debug purposses. They may
be rendered into the running video stream as OSD window. Currently this is the only way how to view
them. The configuration properties are:

osd/enabled - If true, then OSD window is enabled.

osd/position - Coordinates [x, y] (in pixels) of the top-left corner of rendered OSD window.

osd/size - Font size.

The example of statistics OSD window:

Each line begins with shortened name of the video pipeline component followed by its statistics. Possible
components:

src - Source. Always present.
out - Output device. Present only if output device is enabled.

The following statistics are:

size - Size (width x height) of the video frame.

rate - The first number indicates the frame rate (in frames per second, fps). The second number indicates
the bitrate (in mebibytes per second, MiB/s). Both numbers are shown as integers (truncated floats).

delay - Delay (in milliseconds) of the frame at time of leaving the corresponding component. It is
measured relatively to the time at which the frame was created the source device. As shown in the OSD
window example, it took 26 milliseconds from creating the frame till passing it into the output device.

pass - Number of frames, that were passed through the corresponding component. It is counted from
the time at which the component was created/enabled.

drop - Number of frames, that couldn’t be passed through the corresponding component (e.g. it was busy)
and thus were dropped. It is counted from the time at which the component was created/enabled. It is
typical for output device (out) to have growing dropped frames if its configured frame rate is less then the
frame rate of the source. To get the number of frames dropped alongside multiple pipeline components,
just sum the dropped frames from all participating components. E.g. to get the total number of dropped
frames on the path between the source and output device, sum dropped frames from src and out.

3.9.2.5 Examples Check if video pipeline (at its top level) is running.
curl -v -X GET 'http://192.168.1.200/api/app/status/video/outputs/fg4_001

-003-001-018_o0/running'

Enable video pipeline (at its top level).
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/video/outputs/fg4_001 -003-001-018_o0/enabled'

Check if FG4 card output is running (consumes video frames from pipeline and sends them to the card
output).
curl -v -X GET 'http://192.168.1.200/api/app/status/video/outputs/fg4_001

-003-001-018_o0/output/fg4/running'

Enable video pipeline and FG4 card output with one command.
curl -v -X PATCH -H 'Content-Type: application/json' -d '{"enabled":true,"output

":{"fg4":{"enabled":true}}}' 'http://192.168.1.200/api/app/config/video/outputs/
fg4_001 -003-001-018_o0'

54

Get properties (real values) of FPDL3 interface of FG4 card.
curl -v -X GET 'http://192.168.1.200/api/app/status/video/outputs/fg4_001

-003-001-018_o0/output/fg4/interface/fpdl3'

Get properties (required values) of FPDL3 interface of FG4 card.
curl -v -X GET 'http://192.168.1.200/api/app/config/video/outputs/fg4_001

-003-001-018_o0/output/fg4/interface/fpdl3'

3.10 CAN

CAN configuration and status are located at JSON pointer /can. The API consists of two main parts. The
first one (named as CAN devices) represents the physical devices, CAN controllers and transceivers. The
second one (named as CAN captures) represents the streams, responsible for capturing CAN messages
from specified CAN device, encoding them and transmitting via network or saving to storage.

Snippet of CAN configuration and status (at JSON pointer /can)
{

"captures": {
"capt0" : {...},
"capt1" : {...},
"capt2" : {...},
"capt3" : {...}

},
"devices": {

"can0" : {...},
"can1" : {...}

}
}

3.10.1 CAN devices

CAN devices configuration and status are located at JSON pointer /can/devices. They are physical de-
vices, CAN controllers and transceivers, directly connected to link layer. They are also System-managed
devices, so their names are fully controlled by operating system. FG4 Multibox contains two embedded
CAN devices, usually named as can0 and can1.

Snippet of CAN device configuration (at JSON pointer /can/devices/can0)
{

"bittiming": {
"bitrate": 500000,
"sample_point": 0.75

},
"ctrlmode": {

"fd": false,
"fd_non_iso": false

},
"data_bittiming": {

"bitrate": 2000000,
"sample_point": 0.75

},
"enabled": false

}

Snippet of CAN device status (at JSON pointer /can/devices/can0)
{

"berr_counter": {
"rx": 0,

55

"tx": 0
},
"bittiming": {

"bitrate": 500000,
"phase_seg1": 30,
"phase_seg2": 20,
"prop_seg": 29,
"sample_point": 0.75,
"sjw": 1,
"tq": 25

},
"bittiming_const": {

"brp": {
"max": 511,
"min": 1

},
"brp_inc": 1,
"sjw": {

"max": 127,
"min": 1

},
"tseg1": {

"max": 255,
"min": 2

},
"tseg2": {

"max": 127,
"min": 0

}
},
"clock": 40000000,
"ctrlmode": {

"berr_reporting": false,
"fd": false,
"fd_non_iso": false,
"listen_only": false,
"one_shot": false,
"presume_ack": false,
"triple_sampling": false

},
"data_bittiming_const": {

"brp": {
"max": 15,
"min": 1

},
"brp_inc": 1,
"sjw": {

"max": 15,
"min": 1

},
"tseg1": {

"max": 31,
"min": 1

},
"tseg2": {

"max": 15,
"min": 0

}
},
"restart_delay": 0,
"state": "stopped",
"stats": {

"flow": {

56

"rx": {
"bytes": 0,
"dropped": 0,
"errors": 0,
"packets": 0

},
"tx": {

"bytes": 0,
"dropped": 0,
"errors": 0,
"packets": 0

}
},
"link": {

"arbitration_lost": 0,
"bus_error": 0,
"bus_off": 0,
"error_passive": 0,
"error_warning": 0,
"restarts": 0

}
}

}

Bit timing is configured by bittiming (and also by data_bittiming if FD is used). Bit timing can be
configured in two ways. The first way is to set only bitrate (in bits per second) and sample_point (from
interval 0.0 to 0.999). The second way is to set time quanta tq (in nanoseconds), propagation segment
prop_seg (in units of time quanta), phase buffer segments phase_seg1 and phase_seg2 (in units of time
quanta) and synchronization jump width sjw (in units of time quanta). In case of the first method,
at least bitrate must be specified, sample_point is optional. In case of the second method, at least tq,
prop_seg, phase_seg1 and phase_seg2 must be specified, sjw is optional. If bit timing configuration
contains bitrate, then the first method is used, otherwise the second method is used. Remember, that
bit rate and sample point are only alternative parameters, intended for setting bit timing in simple way.
The parameters used by CAN controllers are time quanta (realized by bit rate prescaler connected to
clock, see brp and clock in status), propagation segment, phase buffer segments and synchronization
jump width. These are derived from bit rate and sample point automatically. To view the actually used
bit timing parameters, see bittiming (and also data_bittiming if FD is used) in status. Note that these
status parameters are not present until the CAN device is started for the first time and subsequently
they are updated only whenever the CAN device is restarted. The limits for bit timing parameters can
be found in bittiming_const and data_bittiming_const in status.

Control modes are configured by ctrlmode. Bus error reporting can be enabled by berr_reporting. Using
of FD (flexible data rate) can be enabled by fd. Using of non-ISO FD can be enabled by fd_non_iso.
Using of listen only mode (no ACKs) can be enabled by listen_only. Using of one-shot mode (no
retransmits due to arbitration loss or error frame) can be enabled by one_shot. Presuming ACKs
(behave like there exist ACKs on the bus, although there may be none in reality) can be enabled by
presume_ack. Using of triple sampling (sample for 3 time quanta per bit instead of 1) can be enabled
by triple_sampling. All these parameters are optional and to use them they must also be supported by
connected CAN device and/or its corresponding operating system driver. See status to view actually
used control modes. Note that they are updated only whenever CAN device is restarted. Also note that
status always shows all control modes, even if they are not supported by connected CAN device/driver.
It is up to user to know, which modes are supported. FG4 Multibox embedded CAN devices support
theses modes: berr_reporting, fd, fd_non_iso, listen_only and one_shot.

To enable CAN device just set enabled to true. Real device state can be observed in status state, which can
be one of these values error_active, error_warning, error_passive, bus_off and stopped. To get from bus-
off state, device must be disabled (wait for stopped in state) and enabled again. Or, when restart_delay is
set to non-zero value (in milliseconds), device is restarted after specified delay automatically. Currently
FG4 Multibox only receives, so no bus-off state should occur.

There exist more items in status, especially statistics stats may be useful. They are all fairly self-
explanatory.

57

3.10.2 CAN captures

CAN captures (aka CAN capture devices) configuration and status are located at JSON pointer /can
/captures. Each CAN capture device represents the stream, responsible for capturing CAN messages
from physical CAN device, encoding to specific format and then transmitting via network or saving to
storage. They are also User-managed devices, so their count, naming and life cycle are fully controlled
by user. Multiple CAN capture devices may use the same physical CAN device. Following image shows
the structure of CAN capture device. The red strings are object names, the same names are used in
JSON configuration and status.

Snippet of CAN capture configuration (at JSON pointer /can/captures/capt0)
{

"capture": {
"device": "can0",
"filters": [

{
"data": [0, 1, 0, 1],
"data_mask": [255, 255, 255, 255],
"ext": false,
"fd": false,
"id": 2046,
"id_mask": 2047,
"rtr": false,
"trigger_source": false

},
{

"data": [0, 0, 0, 0, 0, 0, 0, 2],
"data_mask": [0, 0, 0, 0, 0, 0, 0, 255],
"ext": true,
"fd": false,
"id": 536870910,
"id_mask": 536870911,
"rtr": false,
"trigger_source": false

}
],
"filters_enabled": true

},
"enabled": false,
"encoder": {

"canutils": {},
"type": "canutils"

},
"file_writer": {

"enabled": false,
"path": "mounts:/satadisk/can/captures/capt0/"

},
"tcp_server": {

58

"port": 51001
},
"tcp_session": {}

}

Snippet of CAN capture status (at JSON pointer /can/captures/capt0)
{

"file_writer": {
"running": false

},
"running": false

}

To enable the CAN capture device, just set enabled to true. See running property in status to get the real
state of CAN capture device. If the running property is set to true, then capture, encoder and tcp_server
are also running. Element file_writer has its own separate enable property. To have the running CAN
capture device, some conditions must be met. Primarily the used physical CAN device must be enabled
and must be in error_active state. CAN messages are timestamped by Monotonic time.

3.10.2.1 Capture and filters The capture element is the first one in the pipeline. It is the element,
where all CAN messages are coming from. The actual physical CAN device used for capturing the
messages is specified by device. It may be one of the CAN devices found at JSON pointer /can/devices.
Then, if filters_enabled is set to true, the captured CAN message is going to filters, otherwise it is directly
going to encoder.

The filters array contains filters, each one successively applied on captured CAN message. If any of
filters match, then the message passes. If filters array is empty, then no message passes. Each filter may
contain multiple critera and if all of them match, then the filter matches. The only required criterion is
id (CAN message identifier).

id - CAN message identifier. Should be between 0 and 2047 (0x7FF) for standard 11-bit identifier (CAN
2.0A), or between 0 and 536870911 (0x1FFFFFFF) for extended 29-bit identifier (CAN 2.0B).

id_mask - CAN message identifier mask. If omitted, then defaults to 536870911 (0x1FFFFFFF).

data - CAN message data. Array of bytes, each between 0 and 255 (0xFF). Should be of the same size
as the message expected on the bus, between 0 and 8 for non-FD, or between 0 and 8, 12, 16, 20, 24, 32,
48 or 64 for FD messages. If omitted, then filtering by this criterion is disabled.

data_mask - CAN message data mask. Array of bytes. Must be of the same size as CAN message data.
If omitted, then defaults to array of 255 (0xFF).

ext - CAN message ‘Extended’ flag. If omitted, then filtering by this criterion is disabled.

fd - CAN message ‘FD’ flag. If omitted, then filtering by this criterion is disabled.

rtr - CAN message ‘Remote Transmission Request’ flag. If omitted, then filtering by this criterion is
disabled.

The following pseudocode shows the process of filter critera matching:
match = ((message.id BITWISE_AND filter.id_mask) EQUALS (filter.id BITWISE_AND

filter.id_mask))
AND (NOT EXISTS filter.data OR ((message.data BITWISE_AND filter.data_mask)

EQUALS (filter.data BITWISE_AND filter.data_mask)))
AND (NOT EXISTS filter.ext OR message.ext EQUALS filter.ext)
AND (NOT EXISTS filter.fd OR message.fd EQUALS filter.fd)
AND (NOT EXISTS filter.rtr OR message.rtr EQUALS filter.rtr)

Each filter is able to act as trigger source within the Trigger system. To enable this feature just
set trigger_source of appropriate filter to true. To avoid the unintentional overload of trigger
system enable the trigger source only if really required. Identifier of generated trigger is /can/cap-
tures/<name>/capture/filters/<index>.

59

3.10.2.2 Encoder The encoder element is responsible for encoding the proprietary stream of CAN
messages into any well known format. The common attribute of all supported encoders is the fact,
that encoded stream has no special header or footer. It basically means, that CAN messages can be
decoded from any point of running stream, of course usually from boundary of individual messages. Each
supported encoder has its own configuration element and the actually selected encoder is determined by
type. Currently there is only one supported encoder type: canutils.

canutils
This format is used by can-utils, a well known linux project providing various SocketCAN userspace
utilities and tools (see here for detailed description). Basically there are two types of format used by
can-utils, compact and long. Currently only compact type is supported. The configuration element is
empty object as there is nothing to be configured for now.

Snippet of encoded stream containing these 5 CAN messages (transmitted with 1 second period)

1. id=0x100 (sff), dlc=8, data=[0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77]
2. id=0x100 (eff), dlc=8, data=[0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77]
3. id=0x100 (sff), dlc=8, data=[0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77], fd
4. id=0x100 (sff), dlc=8, data=[0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77], fd, brs
5. id=0x100 (sff), dlc=8, rtr

(0000012300.000000) can0 100#0011223344556677
(0000012301.000000) can0 00000100#0011223344556677
(0000012302.000000) can0 100##40011223344556677
(0000012303.000000) can0 100##50011223344556677
(0000012304.000000) can0 100#R8

3.10.2.3 File writer The file_writer element is responsible for storing the encoded stream to
mounted device (e.g. SATA or USB disk). Destination file is determined by path, which is a string
complying with definition of URI (Uniform Resource Identifier), see RFC3986. Only scheme and path
components are used within the URI.

Scheme component must always be set to mounts value. It means that one of the mounted devices will
be used for writing the file.

Path component represents the file path. It must always start with forward slash character “/”. The
first segment of the path must always be the name of specific mount point, in general it can be any
of mount points located in status at JSON pointer /storage/mounts. See Mounts chapter for detailed
description. The following segments represent the rest of the file path within the mount point. The path
may contain some special variables, which are replaced by their real values at the time the file is created.
These variables must be specified in form $(variable_name). Currently supported variables:

time - system time complying with full date and time according to ISO 8601, with milliseconds

ext - default file extension (including the dot “.”) corresponding with used data format

When the path ends with forward slash character “/”, it is considered as directory and the file name is
constructed automatically as $(time)$(ext). When the path contains non-existent directories, they will
be created automatically.

Here are examples of possible paths:
mounts:/satadisk/can/captures/capt0/

The file is created on storage device, that is mounted to mount point satadisk. Directories can, captures
and capt0 are created automatically if they don’t exist. Because the path ends with “/”, it is considered
as directory and the file name is constructed automatically. So the resulting file name on the mounted
device may look something like /can/captures/capt0/20240215T105231.517Z.log.
mounts:/satadisk/captures/capt0_$(time)$(ext)

The file is created on storage device, that is mounted to mount point satadisk. Directory captures
is created automatically if it doesn’t exist. The resulting file name on the mounted device may look
something like /captures/capt0_20240215T105231.517Z.log.

60

https://github.com/linux-can/can-utils
https://datatracker.ietf.org/doc/html/rfc3986

To enable the file writer, just set enabled to true. See running property in status to get the real state of
file writer. To have the running file writer, some conditions must be met. E.g. the whole CAN capture
device must be enabled, file writer must be enabled, mount point must exist, mounted device must be
writable and must contain enough free space, file name must be correctly specified, used physical CAN
device must be enabled. When any of these conditions are not met or any errors occur, the file writer
stops working and the running state is set to false. Whenever the file writer changes its running state to
true, it creates new file and opens it for writing. When the file writer changes its running state to false,
it also closes the file.

3.10.2.4 Streaming over network Encoded stream may also be transmitted over network as TCP
stream. Element tcp_server represents the TCP server, that listens on specified port. Each time it
accepts incoming connection, new TCP session is created. Multiple TCP sessions may exist at the same
time. Each created TCP session is configured with parameters found in tcp_session element. Actually
this element is empty object as there is nothing to be configured for now.

3.10.2.5 Examples Get status of CAN capture device capt0
curl -v -X GET 'http://192.168.1.200/api/app/status/can/captures/capt0'

Enable the CAN capture device capt0
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/can/captures/capt0/enabled'

Read the encoded stream of CAN messages from port 51001 (assume that there is listening CAN capture
TCP server)
nc 192.168.1.200 51001

Get list of files contained in specifed directory and then read the content of selected file
curl http://192.168.1.200/api/fs/mounts/satadisk/can/captures/capt0/
curl http://192.168.1.200/api/fs/mounts/satadisk/can/captures/capt0/20240216T110003

.165Z.log

3.11 Timers

Timers are simple devices, that allow to perform any predefined operation (via Trigger system) after the
specified period expires. They are also User-managed devices, so their count, naming and life cycle are
fully controlled by user. Configuration and status are located at JSON pointer /timer.

Snippet of timers configuration (at JSON pointer /timer)
{

"devices": {
"t0": {

"arm_on_enable": false,
"enabled": false,
"periods": [

500,
1000,
2000

],
"shots_count_max": 0,
"trigger_sources": {

"shot": false,
"shot_number": false,
"shot_period": false

}
},
"t1": {

61

"arm_on_enable": false,
"enabled": false,
"periods": [

0,
1000

],
"shots_count_max": 0,
"trigger_sources": {

"shot": false,
"shot_number": false,
"shot_period": false

}
}

}
}

Snippet of timers status (at JSON pointer /timer)
{

"devices": {
"t0": {

"armed": false,
"arms_count": 0,
"shots_count": 0

},
"t1": {

"armed": false,
"arms_count": 0,
"shots_count": 0

}
}

}

To work with timer it must be enabled first, just set the enabled property to true. When the timer is
enabled, it can be switched between armed and disarmed state. The current state is indicated by armed
status property. When property arm_on_enable is true, the timer is armed automatically by transition
to enabled state (changing enabled property to true). To manually switch the armed state, just call one
of these synchronous nonparametric actions at URL paths

• /api/app/actions/timer/devices/<name>/arm
• /api/app/actions/timer/devices/<name>/disarm

When the timer gets armed, it starts counting with milliseconds resolution. Now the property periods
comes into the game. It contains the array of periods, in milliseconds, the timer successively counts and
after each period is reached, the timer shots (expires). When the last period is reached, the counting
continues from the second element of periods array (periods[1]). The first element (periods[0]) is skipped
when returning, so it may be used as initial delay.

Let’s have periods containing [500,1000,2000]. When the timer gets armed, it shots as follows:
500ms | shot | 1000ms | shot | 2000ms | shot | 1000ms | shot | 2000ms | shot | 1000

ms | ...

Let’s have periods containing [0,1000]. When the timer gets armed, it shots as follows:
shot | 1000ms | shot | 1000ms | shot | 1000ms | ...

When the number of shots reaches the value set in shots_count_max property, the timer is disarmed
automatically. Set the shots_count_max property to zero to allow infinite counting. The number of
shots is indicated by shots_count status property, which is zeroed by transition to armed state. The
number of transitions to armed state is indicated by arms_count status property, which is zeroed by
transition to enabled state.

The timer gets armed (counting starts) on either of following conditions:

62

• property enabled changes to true while property arm_on_enable is true
• action at URL path /api/app/actions/timer/devices/<name>/arm is called while property enabled

is true

The timer gets disarmed (counting stops) on either of following conditions:

• property periods contains only one element, so return to the second element is not possible
• number of shots reaches the value set in shots_count_max property
• action at URL path /api/app/actions/timer/devices/<name>/disarm is called
• property enabled changes to false

Each timer is able to act as trigger source within the Trigger system. To enable this feature just set the
required trigger source type within the trigger_sources property. To avoid the unintentional overload
of trigger system enable only those trigger sources, that are really required. There exist three types of
trigger sources, each one generates exactly one trigger per one timer shot.

The shot type generates triggers, whose identifier is /timer/devices/<name>/shot.

The shot_number type generates triggers, whose identifier is /timer/devices/<name>/shot/number/<value>.
The <value> identifies the shot number, it equals the shots_count status property.

The shot_period category generates triggers, whose identifier is /timer/devices/<name>/shot/period/<value>.
The <value> identifies the shot period, it equals the index of period in periods array property.

The configuration properties periods, shots_count_max and trigger_sources are sampled (taken into
effect) only by transition from disarmed to armed state. The configuration property arm_on_enable is
sampled (taken into effect) only by transition from disabled to enabled state.

3.11.1 Examples

Get status of timer device t0
curl -v -X GET 'http://192.168.1.200/api/app/status/timer/devices/t0'

Enable timer device t0
curl -v -X PUT -H 'Content-Type: application/json' -d 'true' 'http://192.168.1.200/

api/app/config/timer/devices/t0/enabled'

Arm timer device t0
curl -v -X POST 'http://192.168.1.200/api/app/actions/timer/devices/t0/arm'

3.12 FG4 PCIe cards

This part of API describes the parameters of Digiteq Automotive FG4 PCIe cards. Common FG4 status
is available at JSON pointer /fg4. Status of particular devices is available at JSON pointer /fg4/devices.
FG4 devices are System-managed, so their names are fully controlled by operating system. There is no
configuration available.

Snippet of FG4 status (at JSON pointer /fg4)
{

"devices": {
"001-003-001-018": {...},
"001-031-002-072": {...},
"001-031-002-099": {...}

}
}

Snippet of FG4 device status (at JSON pointer /fg4/devices/001-003-001-018)

63

{
"address": "0000:06:00.0",
"vendor_id": 7896,
"device_id": 257,
"product_id": 1,
"fw_type": "fpdl3",
"fw_version": 814,
"module_type": "fpdl3",
"module_version": 1,
"serial_number": "001-003-001-018",
"temperature": 52,
"video": {

"captures": [
"fg4_001 -003-001-018_i1",
"fg4_001 -003-001-018_i0"

],
"outputs": [

"fg4_001 -003-001-018_o0",
"fg4_001 -003-001-018_o1"

]
}

}

address - PCI address.

vendor_id - Vendor ID, 7896 (0x1ed8) - Digiteq Automotive.

device_id - Device ID, 257 (0x0101) - T100, 513 (0x0201) - T200.

product_id - Product ID, 1 - T100, 2 - T200.

fw_type - Firmware type (fpdl3, gmsl, recovery).

fw_version - Firmware version.

module_type - Module type (fpdl3, gmsl, no_module_present).

module_version - Module version.

serial_number - Serial number.

temperature - Temperature, in degree Celsius.

video/captures - List of video captures. These are the names of video capture devices available on module..

video/outputs - List of video outputs. These are the names of video output devices available on module.

All these parameters are specific for alone FG4 PCIe card, no matter which (if ever) module is in-
serted. The configuration and status parameters of particular video capture/output devices (depen-
dent on inserted module) are part of video capture/output streaming subsystem. It is available at
JSON pointers /video/captures/<name>/capture/fg4 and /video/outputs/<name>/output/fg4, where the
<name> corresponds to the name available in list at JSON pointer /fg4/devices/*/video/captures and
/fg4/devices/*/video/outputs. See Video captures and Video outputs for detailed information about
video capture/output streaming subsystem.

Each FG4 PCIe card must contain firmware, which is compatible with used FG4 Multibox and also with
the type of inserted module. FG4 Multibox tries to satisfy this requirement automatically, see FG4 card
firmware update for detailed information.

3.13 Mainboard PMIC

Mainboard PMIC (Power Management IC) is an integrated circuit located on Mainboard. It controls
the onboard power supply, power on/off sequences and also external triggers. It also provides the ability
to automatically power-on the FG4 Multibox, either when it gets connected to power supply or when
configured event occurs on external trigger. The configuration and status are located at JSON pointer
/mbpmic.

64

Snippet of maiboard PMIC configuration (at JSON pointer /mbpmic)
{

"poweron": false,
"triggers": {

"tr1": {
"edge": "none",
"pull": "none",
"wake": false

},
"tr2": {

"edge": "none",
"pull": "none",
"wake": false

}
}

}

Snippet of maiboard PMIC status (at JSON pointer /mbpmic)
{

"monitor": {
"fanrpm": 1234,
"tmb": 35,
"tmcu": 36,
"vin": 18837,
"vinb": 18946

},
"version": "1.1.6",
"waker": "pwrbtn"

}

The boolean property poweron controls the behavior of FG4 Multibox after the power supply is connected.
If false, then it remains in power-off state. If true, then the power-on sequence is started automatically.
For example this may be useful for automatic restoration of function after accidental power cut.

The object triggers controls the External triggers TR1 and TR2. The property edge (none, rising, falling
or both) configures the type of edge causing the trigger event. Set to none to disable the trigger. The
property pull (none, up or down) configures the connection of internal pull-up or pull-down resistor.
Set to none to have no pull resistor connected. The boolean property wake allows to power-on the FG4
Multibox when configured trigger event occurs. Set to false to disable this feature. Triggers TR1 and TR2
also act as trigger sources within the Trigger system. Identifiers of generated triggers are /mbpmic/tr1
and /mbpmic/tr1.

There are also some status properties. The object monitor shows values from some internal sensors.

fanrpm - cooling fan speed, in rotations per second
tmb - mainboard temperature, in degree Celsius
tmcu - PMIC temperature, in degree Celsius
vin - input voltage, in millivolts
vinb - input backup voltage, in millivolts

The property waker shows the source causing the power-on of FG4 Multibox, it may be one of

n/a - not available (should not occur)
pwron - power supply was connected (should occur only if poweron is true)
pwrbtn - power button was pressed
pwrc - power-cycle was requested
tr1 - configured event occurred on external trigger TR1
tr2 - configured event occurred on external trigger TR2
can1 - not implemented yet (should not occur)
can2 - not implemented yet (should not occur)
bootldr - requested by mainboard PMIC bootloader (may occur after PMIC firmware is updated)

Property version shows the version of mainboard PMIC firmware.

65

3.14 Trigger system

Trigger system allows to perform a specific operation as a reaction to a specific event. Now some terms
must be introduced to avoid possible ambiguous understanding. Object that generates the trigger is
called trigger source. Object that consumes the trigger is called trigger sink. Object that is generated by
trigger source and is consumed by trigger sink is called trigger. Trigger source represents a place, where
an event may be generated. This event is called trigger. Through a configurable connection matrix the
event may arrive to any trigger sink. Trigger sink represents a place, where any event may be consumed
by performing a specified operation/reaction. Trigger system configuration and status are located at
JSON pointer /trigger.

Snippet of trigger system configuration (at JSON pointer /trigger)
{

"connections": {},
"file_writer": {

"enabled": false,
"path": "mounts:/satadisk/triggers/"

},
"tcp_server": {

"port": 51000
}

}

Snippet of trigger system status (at JSON pointer /trigger)
{

"file_writer": {
"running": false

}
}

3.14.1 Trigger

Trigger (event) is an object generated by trigger source. Each trigger has two attributes, identifier and
timestamp. Identifier determines the trigger source, that generated the trigger. Timestamp determines
the moment in time the trigger was generated, Monotonic time is used as time base. Triggers may be
written to storage or streamed over network. In both cases they are transferred as a stream of newline
delimited JSON objects, known as NDJSON. Each JSON object is described by this schema:
{

"$schema" : "http://json-schema.org/draft -07/schema#",
"type" : "object",
"properties" : {

"id" : {
"title" : "Trigger identifier",
"description" : "Trigger identifier determines the trigger source, that

generated the trigger.",
"type" : "string"

},
"ts" : {

"title" : "Trigger timestamp",
"description" : "Trigger timestamp determines the moment in time the

trigger was generated , in nanoseconds.",
"type" : "integer"

}
},
"required" : ["id", "ts"]

}

The stream of triggers, either written to storage or received via network, may look something like:

66

{"id":"/mbpmic/tr1","ts":3961704067701}
{"id":"/control/tcp_session/tr0","ts":3962698000787}
{"id":"/can/captures/capt0/capture/filters/0","ts":3963809236439}
{"id":"/timer/devices/t0/shot","ts":3964894626995}

3.14.2 Trigger source

Trigger source represents a place, where triggers (events) are generated. Each trigger source has its own
unique identifier. Identifiers of existing trigger sources:

• /can/captures/<name>/capture/filters/<index>
• /trigger/tcp_session/<arg>
• /control/tcp_session/<arg>
• /mbpmic/{tr1|tr2}
• /timer/devices/<name>/shot
• /timer/devices/<name>/shot/number/<value>
• /timer/devices/<name>/shot/period/<value>

/can/captures/<name>/capture/filters/<index>
This trigger source generates its trigger whenever a CAN message received on capture <name> matches
filter <index>. See Capture and filters for detailed description.

/trigger/tcp_session/<arg>
This trigger source generates its trigger whenever a specific message is received via trigger TCP session.
It is the same session as the one created for streaming triggers over network, see Streaming over network.
The message must be a newline delimited JSON (NDJSON) of type string, whose value determines
the arg component of the trigger source name. So if “tr” message is received, then trigger source
/trigger/tcp_session/tr generates its trigger.

/control/tcp_session/<arg>
This trigger source generates its trigger whenever a dedicated action is called via remote API served
by application service. Just call the parametric synchronous action at URL path /api/app/actions/
trigger/send to generate the trigger. The parameter contains a custom text (expressed as JSON of type
string), that determines the arg component of the trigger source name. So if action /api/app/actions
/trigger/send with parameter “tr” is called, then trigger source /control/tcp_session/tr generates its
trigger.

/mbpmic/{tr1|tr2}
This trigger source generates its trigger whenever an specified event occurs on external trigger TR1 or
TR2. See Mainboard PMIC for detailed description.

/timer/devices/<name>/shot
/timer/devices/<name>/shot/number/<value>
/timer/devices/<name>/shot/period/<value>
These trigger sources generate their triggers whenever a timer <name> expires. See Timers for detailed
description.

3.14.3 Trigger sink

Trigger sink represents a place, where triggers (events) are consumed, where specified reactions are
performed. There are two types of sinks, configuration and action. Both sinks allow to perform any
operation, that can also be performed via remote API served by Application service. Configuration sink
allows to manipulate the configuration available at URL path /api/app/config, see Application service
configuration. Action sink allows to call any action at URL path /api/app/actions/*, see Application
service actions. It just invokes the specified action, without waiting for results, so it can be used for all
types of actions (parametric/nonparametric, synchronous/asynchronous). See Connections to see how
to use trigger sinks.

67

3.14.4 File writer

The file_writer element is responsible for storing the generated triggers to mounted device (e.g. SATA
or USB disk). Destination file is determined by path, which is a string complying with definition of URI
(Uniform Resource Identifier), see RFC3986. Only scheme and path components are used within the
URI.

Scheme component must always be set to mounts value. It means that one of the mounted devices will
be used for writing the file.

Path component represents the file path. It must always start with forward slash character “/”. The
first segment of the path must always be the name of specific mount point, in general it can be any
of mount points located in status at JSON pointer /storage/mounts. See Mounts chapter for detailed
description. The following segments represent the rest of the file path within the mount point. The path
may contain some special variables, which are replaced by their real values at the time the file is created.
These variables must be specified in form $(variable_name). Currently supported variables:

time - system time complying with full date and time according to ISO 8601, with milliseconds

ext - default file extension (including the dot “.”), currently it is always .ndjson

When the path ends with forward slash character “/”, it is considered as directory and the file name is
constructed automatically as $(time)$(ext). When the path contains non-existent directories, they will
be created automatically.

Here are examples of possible paths:
mounts:/satadisk/triggers/

The file is created on storage device, that is mounted to mount point satadisk. Directory triggers is
created automatically if it doesn’t exist. Because the path ends with “/”, it is considered as directory
and the file name is constructed automatically. So the resulting file name on the mounted device may
look something like /triggers/20240215T105231.517Z.ndjson.
mounts:/satadisk/triggers_$(time)$(ext)

The file is created on storage device, that is mounted to mount point satadisk. The resulting file name
on the mounted device may look something like /triggers_20240215T105231.517Z.ndjson.

To enable the file writer, just set enabled to true. See running property in status to get the real state
of file writer. To have the running file writer, some conditions must be met. E.g. the file writer must
be enabled, mount point must exist, mounted device must be writable and must contain enough free
space, file name must be correctly specified. When any of these conditions are not met or any errors
occur, the file writer stops working and the running state is set to false. Whenever the file writer changes
its running state to true, it creates new file and opens it for writing. When the file writer changes its
running state to false, it also closes the file.

3.14.5 Streaming over network

Generated triggers may also be transmitted over network as TCP stream. Element tcp_server represents
the TCP server, that listens on specified port. Each time it accepts incoming connection, new TCP session
is created. Multiple TCP sessions may exist at the same time.

3.14.6 Connections

The connections object contains connections between trigger sources and trigger sinks. Multiple trigger
sinks may be connected to single trigger source. When trigger source generates a trigger (an event occurs),
all connected trigger sinks consume it (an reaction happens). Each object in connections represents
connection between single trigger source and multiple trigger sinks. The object name specifies trigger
source identifier, the object value specifies an array of connected trigger sinks. Each trigger sink contain
one single child object, whose name determines the type of trigger sink. Currently there are two possible
types, configuration (named as config) and action (named as action).

68

https://datatracker.ietf.org/doc/html/rfc3986

Snippet of trigger connections configuration (at JSON pointer /trigger/connections)
{

"/control/tcp_session/tr0": [
{

"config": {
"operation": {

"arg": false,
"name": "replace"

},
"path": "/video/captures/fg4_001 -003-001-018_i0/enabled"

}
}

],
"/control/tcp_session/tr1": [

{
"config": {

"operation": {
"arg": {

"enabled": true,
"sinks": {

"video": {
"enabled": true,
"file_writer": {

"enabled": true
}

}
}

},
"name": "modify"

},
"path": "/video/captures/fg4_001 -003-001-018_i0"

}
}

],
"/control/tcp_session/tr2": [

{
"config": {

"operation": {
"name": "negate"

},
"path": "/video/captures/fg4_001 -003-001-018_i0/enabled"

}
}

],
"/control/tcp_session/tr3": [

{
"action": {

"arg": {
"text": "tr3",
"timeout": 1000

},
"name": "/video/captures/fg4_001 -003-001-018_i0/trigger_mark"

}
}

],
"/timer/devices/t0/shot": [

{
"action": {

"arg": {
"text": "t0",
"timeout": 250

},
"name": "/video/captures/fg4_001 -003-001-018_i0/trigger_mark"

69

}
}

]
}

3.14.6.1 Configuration trigger sink Configuration trigger sink allows to manipulate the configura-
tion available at URL path /api/app/config, see Application service configuration. It behaves the similar
way as via HTTP API, any JSON nodes may be changed, created, deleted, etc. Configuration trigger
sink is contained in object named as config. It contains two required items, path and operation. The
path is of type string and contains JSON pointer to the configuration node, that should be manipulated.
The operation is of type object and contains one required item name and one optional item arg. The
presence and content of arg depends on operation name. This is the way how the configuration trigger
sink works, an operation (specified by name) is performed on configuration JSON node (specified by
path). Supported operation names:

• replace - replaces content of existing node (at JSON pointer path) by content of arg. It works the
same way as PUT verb in HTTP API.

• modify - modifies/patches content of existing node (at JSON pointer path) by using content of arg.
The content of arg is considered as JSON patch, see RFC6902. It works the same way as PATCH
verb in HTTP API.

• create - creates new node (if doesn’t exist) at JSON pointer path. The last segment of path is used
as name of node to be created. The previous segments must point to existing nodes. The content
of arg is used as content of the new node. It works the same way as CREATE verb in HTTP API.

• delete - deletes existing node (if exists) at JSON pointer path. The last segment of path is used as
name of node to be deleted. The previous segments must point to existing nodes. The arg is not
used. It works the same way as DELETE verb in HTTP API.

• negate - negates value at JSON pointer path. The value must be of boolean type. The arg is not
used. There is no counterpart verb in HTTP API.

Basically there are two methods how to set multiple properties as a reaction to single trigger. First, each
property is set (by replace) in separate sink and these sinks are the separate members of trigger sink
array. Second, all properties are part of single JSON patch, which is then used (by modify) in one single
trigger sink. Always prefer the second method as it is much more efficient.

For better understanding let’s go through the above snippet of trigger connections. There are three
configuration trigger sinks, each connected to different trigger source.

First trigger sink is connected to trigger source /control/tcp_session/tr0. The trigger source generates
its trigger whenever action /trigger/send is called with argument “tr0”. As a reaction, trigger sink sets
the configuration property /video/captures/fg4_001-003-001-018_i0/enabled to false. It means, that the
video capture device fg4_001-003-001-018_i0 will be disabled.

Second trigger sink is connected to trigger source /control/tcp_session/tr1. The trigger source generates
its trigger whenever action /trigger/send is called with argument “tr1”. As a reaction, multiple configu-
ration properties are set at the same time. Properties /video/captures/fg4_001-003-001-018_i0/enabled,
/video/captures/fg4_001-003-001-018_i0/sinks/video/enabled and /video/captures/fg4_001-003-001-
018_i0/sinks/video/file_writer/enabled are set to true. It means, that the video capture device
fg4_001-003-001-018_i0 will be enabled, its video sink will be enabled and the file writer of this video
sink will also be enabled.

Third trigger sink is connected to trigger source /control/tcp_session/tr2. The trigger source generates
its trigger whenever action /trigger/send is called with argument “tr2”. As a reaction, trigger sink
negates (switches) the configuration property /video/captures/fg4_001-003-001-018_i0/enabled.

3.14.6.2 Action trigger sink Action trigger sink allows to call any action at URL path /api/app
/actions/*, see Application service actions. It behaves the similar way as via HTTP API, any action
with any argument may be called. It just invokes the specified action, without waiting for results, so
it can be used for all types of actions (parametric/nonparametric, synchronous/asynchronous). Action

70

https://datatracker.ietf.org/doc/html/rfc6902

trigger sink is contained in object named as action. It contains one required item name and one optional
item arg. The presence and content of arg depends on name. This is the way how the action trigger sink
works, it calls the action (specified by name) with argument (specified by arg).

For better understanding let’s go through the above snippet of trigger connections. There are two action
trigger sinks, each connected to different trigger source.

First trigger sink is connected to trigger source /control/tcp_session/tr3. The trigger source generates its
trigger whenever action /trigger/send is called with argument “tr3”. As a reaction, trigger sink calls the
action /video/captures/fg4_001-003-001-018_i0/trigger_mark with argument {“text”: “tr3”,“timeout”:
1000}. It means, that a trigger mark tr3 will be rendered in video capture stream for 1000 milliseconds.

Second trigger sink is connected to trigger source /timer/devices/t0/shot. The trigger source gen-
erates its trigger whenever timer device t0 expires. As a reaction, trigger sink calls the action
/video/captures/fg4_001-003-001-018_i0/trigger_mark with argument {“text”: “t0”,“timeout”: 250}.
It means, that a trigger mark t0 will be rendered in video capture stream for 250 milliseconds.

3.14.7 Examples

Get status of trigger system
curl -v -X GET 'http://192.168.1.200/api/app/status/trigger'

Get configuration of trigger connections
curl -v -X GET 'http://192.168.1.200/api/app/config/trigger/connections '

Read the stream of triggers from dedicated trigger TCP session on port 51000
nc 192.168.1.200 51000

Generate trigger /trigger/tcp_session/tr by dedicated trigger TCP session on port 51000
echo '"tr"' | nc -N 192.168.1.200 51000

Generate trigger /control/tcp_session/tr by calling of dedicated action via HTTP API
curl -v -X POST -H 'Content-Type: application/json' -d '"tr"' 'http

://192.168.1.200/api/app/actions/trigger/send'

Get list of files contained in specifed directory and then read the content of selected file
curl http://192.168.1.200/api/fs/mounts/satadisk/triggers/
curl http://192.168.1.200/api/fs/mounts/satadisk/triggers/20240314T111001.479Z.

ndjson

3.15 CPU

CPU related stuff is located at JSON pointer /cpu. Only status is available.

Snippet of CPU status (at JSON pointer /cpu)
{

"usage": 12,
"temperature": 44

}

usage - Usage, in percentage, in range from 0 to 100. The usage is computed over all six (2x Denver 2,
4x Cortex-A57) cores. Typical usage of idle state is below 5%.

temperature - Temperature, in degree Celsius.

71

3.16 RAM

RAM related stuff is located at JSON pointer /ram. Only status is available.

Snippet of RAM status (at JSON pointer /ram)
{

"size": {
"total": 8241074176,
"used": 1721339904

}
}

/size/total - Total RAM size, in bytes.

/size/used - Used RAM size, in bytes.

3.17 About

Some general information about FG4 Multibox is located at JSON pointer /about. Only status is
available. The information is static, so it never changes when the FG4 Multibox is running.

Snippet of about status (at JSON pointer /about)
{

"factory_installer_version": "32.5.0.5",
"factory_package_version": "1.0-build236",
"runtime_package_version": "1.0-build236",
"serial_number": "010-001-001-001"

}

factory_installer_version - Version of used factory installer. It is the tool, that is used for installation
of factory package. See Firmware to get detailed information.

factory_package_version - Version of installed factory package.

runtime_package_version - Version of installed runtime package.

serial_number - Serial number of FG4 Multibox.

72

4 Graphical interface

Graphical interface is implemented by web application, hosted on FG4 Multibox HTTP server, TCP port
80, URL path /www/web/index.html. Actually URL path / may be also used as there exists redirection 301
(move permanently) to real location. So when using default IP address, just write http://192.168.1.200/
to your favourite web browser. Web application uses the FG4 Multibox API as its backend.

73

	Introduction
	Main Features
	Hardware overview
	Main components

	Software overview

	Hardware interface
	Power button
	Power button LED

	SD card
	USB
	HDMI
	CAN termination
	CAN
	External triggers
	Electrical characteristics

	Service interface
	Programming interface
	Ethernet
	Power supply

	Application interface
	Services
	Application service
	Logger service
	Filesystem service

	Power
	Examples

	Firmware
	FG4 Multibox firmware update
	FG4 card firmware update

	Configuration
	Configuration update
	Configuration reset
	Devices
	Examples

	Logger
	Examples

	Time
	System time
	Monotonic time
	Examples

	Network
	Examples

	Storage
	Disks
	Mounts
	Examples

	Video
	Video captures
	Video outputs

	CAN
	CAN devices
	CAN captures

	Timers
	Examples

	FG4 PCIe cards
	Mainboard PMIC
	Trigger system
	Trigger
	Trigger source
	Trigger sink
	File writer
	Streaming over network
	Connections
	Examples

	CPU
	RAM
	About

	Graphical interface

